Question
upstudy study bank question image url

(b) Prove the following identities: (1) \( \tan x+\frac{1}{\tan x}=\frac{1}{\sin x \cos x} \) (3) \( \frac{1}{\tan x}-\tan x=\frac{1-2 \sin ^{2} x}{\sin x \cos x} \) (2) \( \frac{1}{\sin \alpha}-\sin \alpha=\frac{\cos \alpha}{\tan \alpha} \) (5) \( \frac{\tan ^{2} \theta}{\tan ^{2} \theta+1}=\sin ^{2} \theta \) (6) \( \frac{\tan \theta}{1-\tan ^{2} \theta}=\frac{\cos \theta \sin \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \) (7) \( \frac{\cos x}{1-\tan x}+\frac{\sin x \tan x}{\tan x-1}=\sin x+\cos x \) (8) \( \tan ^{2} x\left(1+\frac{1}{\tan ^{2} x}\right)=\frac{1}{\cos ^{2} x} \) (9) \( \frac{1+\tan ^{2} x}{1+\frac{1}{\tan ^{2} x}}=\tan ^{2} x \) (10) \( \frac{\tan x+\sin x}{\tan x-\sin x}=\frac{(1+\cos x)^{2}}{\sin ^{2} x} \) 123

Ask by Paul Morgan. in South Africa
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**(1)** \[ \tan x + \frac{1}{\tan x} = \frac{1}{\sin x \cos x} \] **(3)** \[ \frac{1}{\tan x} - \tan x = \frac{1 - 2 \sin^2 x}{\sin x \cos x} \] **(2)** \[ \frac{1}{\sin \alpha} - \sin \alpha = \frac{\cos \alpha}{\tan \alpha} \] **(5)** \[ \frac{\tan^2 \theta}{\tan^2 \theta + 1} = \sin^2 \theta \] **(6)** \[ \frac{\tan \theta}{1 - \tan^2 \theta} = \frac{\cos \theta \sin \theta}{\cos^2 \theta - \sin^2 \theta} \] **(7)** \[ \frac{\cos x}{1 - \tan x} + \frac{\sin x \tan x}{\tan x - 1} = \sin x + \cos x \] **(8)** \[ \tan^2 x \left(1 + \frac{1}{\tan^2 x}\right) = \frac{1}{\cos^2 x} \] **(9)** \[ \frac{1 + \tan^2 x}{1 + \frac{1}{\tan^2 x}} = \tan^2 x \] **(10)** \[ \frac{\tan x + \sin x}{\tan x - \sin x} = \frac{(1 + \cos x)^2}{\sin^2 x} \]

Solution

**(1)** We start with the left-hand side (LHS): \[ \tan x+\frac{1}{\tan x}=\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}. \] Combine the two fractions over a common denominator: \[ \frac{\sin^2x+\cos^2x}{\sin x\cos x}. \] Since \[ \sin^2x+\cos^2x=1, \] the expression becomes \[ \frac{1}{\sin x\cos x}, \] which is the right-hand side (RHS). --- **(3)** The left-hand side is \[ \frac{1}{\tan x}-\tan x=\frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}. \] Combine these fractions: \[ \frac{\cos^2x-\sin^2x}{\sin x\cos x}. \] Recall that \[ \cos^2x-\sin^2x=1-2\sin^2x \] (since both \(\cos^2x-\sin^2x\) and \(1-2\sin^2x\) equal \(\cos2x\)). Hence, \[ \frac{\cos^2x-\sin^2x}{\sin x\cos x}=\frac{1-2\sin^2x}{\sin x\cos x}, \] which proves the identity. --- **(2)** The left-hand side is \[ \frac{1}{\sin \alpha}-\sin \alpha. \] Write over a common denominator: \[ \frac{1-\sin^2\alpha}{\sin\alpha}. \] Using the Pythagorean identity, we have \[ 1-\sin^2\alpha=\cos^2\alpha. \] Thus, \[ \frac{\cos^2\alpha}{\sin\alpha}. \] Now, the right-hand side is \[ \frac{\cos\alpha}{\tan\alpha}=\frac{\cos\alpha}{\frac{\sin\alpha}{\cos\alpha}}=\frac{\cos^2\alpha}{\sin\alpha}. \] Both sides are equal. --- **(5)** Rewrite the left-hand side using the identity \[ 1+\tan^2\theta=\sec^2\theta=\frac{1}{\cos^2\theta}: \] \[ \frac{\tan^2\theta}{\tan^2\theta+1}=\tan^2\theta\cos^2\theta. \] Since \[ \tan^2\theta=\frac{\sin^2\theta}{\cos^2\theta}, \] we have \[ \tan^2\theta\cos^2\theta=\frac{\sin^2\theta}{\cos^2\theta}\cdot\cos^2\theta=\sin^2\theta. \] --- **(6)** Express \(\tan \theta\) in terms of sine and cosine: \[ \frac{\tan\theta}{1-\tan^2\theta}=\frac{\frac{\sin\theta}{\cos\theta}}{1-\frac{\sin^2\theta}{\cos^2\theta}}. \] Combine the denominator: \[ 1-\frac{\sin^2\theta}{\cos^2\theta}=\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}. \] Thus, \[ \frac{\frac{\sin\theta}{\cos\theta}}{\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}}=\frac{\sin\theta}{\cos\theta}\cdot\frac{\cos^2\theta}{\cos^2\theta-\sin^2\theta}=\frac{\sin\theta\cos\theta}{\cos^2\theta-\sin^2\theta}. \] --- **(7)** Examine the expression: \[ \frac{\cos x}{1-\tan x}+\frac{\sin x\,\tan x}{\tan x-1}. \] Notice that \[ \tan x-1=-(1-\tan x). \] Thus, the second term can be rewritten as: \[ \frac{\sin x\,\tan x}{\tan x-1}=-\frac{\sin x\,\tan x}{1-\tan x}. \] Now the expression becomes: \[ \frac{\cos x}{1-\tan x}-\frac{\sin x\,\tan x}{1-\tan x}=\frac{\cos x-\sin x\,\tan x}{1-\tan x}. \] Express \(\tan x\) as \(\frac{\sin x}{\cos x}\): \[ \sin x\,\tan x=\frac{\sin^2 x}{\cos x}. \] Thus, the numerator becomes: \[ \cos x-\frac{\sin^2 x}{\cos x}=\frac{\cos^2 x-\sin^2 x}{\cos x}. \] The entire expression is then: \[ \frac{\frac{\cos^2 x-\sin^2 x}{\cos x}}{1-\tan x}. \] Recall that \[ 1-\tan x=\frac{\cos x-\sin x}{\cos x}, \] so we have: \[ \frac{\cos^2 x-\sin^2 x}{\cos x-\sin x}. \] Notice that \[ \cos^2 x-\sin^2 x=(\cos x-\sin x)(\cos x+\sin x). \] Cancel the common factor \((\cos x-\sin x)\): \[ \frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x-\sin x}=\cos x+\sin x. \] --- **(8)** Simplify the left-hand side: \[ \tan^2 x\left(1+\frac{1}{\tan^2 x}\right)=\tan^2x+\tan^2x\cdot\frac{1}{\tan^2x}=\tan^2x+1. \] Recall the Pythagorean identity for tangent and secant: \[ 1+\tan^2x=\sec^2x=\frac{1}{\cos^2x}. \] --- **(9)** Write the denominator with a common denominator: \[ 1+\frac{1}{\tan^2x}=\frac{\tan^2x+1}{\tan^2x}. \] Thus, the expression becomes: \[ \frac{1+\tan^2x}{\frac{\tan^2x+1}{\tan^2x}}=\tan^2x. \] --- **(10)** Rewrite \(\tan x\) as \(\frac{\sin x}{\cos x}\): For the numerator: \[ \tan x+\sin x=\frac{\sin x}{\cos x}+\sin x=\sin x\left(\frac{1}{\cos x}+1\right)=\frac{\sin x(1+\cos x)}{\cos x}. \] For the denominator: \[ \tan x-\sin x=\frac{\sin x}{\cos x}-\sin x=\sin x\left(\frac{1}{\cos x}-1\right)=\frac{\sin x(1-\cos x)}{\cos x}. \] Divide the numerator by the denominator: \[ \frac{\frac{\sin x(1+\cos x)}{\cos x}}{\frac{\sin x(1-\cos x)}{\cos x}}=\frac{1+\cos x}{1-\cos x}. \] Now, use the identity \[ 1-\cos^2x=\sin^2x, \] which can be rearranged as \[ 1-\cos x=\frac{\sin^2x}{1+\cos x}, \] provided \(1+\cos x\neq 0\). Substitute into the expression: \[ \frac{1+\cos x}{1-\cos x}=\frac{1+\cos x}{\frac{\sin^2x}{1+\cos x}}=\frac{(1+\cos x)^2}{\sin^2x}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To understand how these identities work, it's essential to revisit some foundational trigonometric properties. For instance, knowing that \( \tan x = \frac{\sin x}{\cos x} \) allows you to substitute and manipulate expressions easily. This is especially useful in identities involving ubiquitous terms like \( \sin \) and \( \cos \). By practicing various substitutions, you can turn complex identities into more manageable equations! Another great way to engage with these identities is through visual aids and graphs. Sketching the unit circle or plotting sine, cosine, and tangent functions can help you see how these relationships play out visually. Observing how these functions behave at different angles gives you a deeper understanding not just of the identities themselves, but how they relate to the broader concept of periodicity in trigonometric functions. Plus, it’s a fun way to explore mathematical concepts!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy