Answer
**(1)**
\[
\tan x + \frac{1}{\tan x} = \frac{1}{\sin x \cos x}
\]
**(3)**
\[
\frac{1}{\tan x} - \tan x = \frac{1 - 2 \sin^2 x}{\sin x \cos x}
\]
**(2)**
\[
\frac{1}{\sin \alpha} - \sin \alpha = \frac{\cos \alpha}{\tan \alpha}
\]
**(5)**
\[
\frac{\tan^2 \theta}{\tan^2 \theta + 1} = \sin^2 \theta
\]
**(6)**
\[
\frac{\tan \theta}{1 - \tan^2 \theta} = \frac{\cos \theta \sin \theta}{\cos^2 \theta - \sin^2 \theta}
\]
**(7)**
\[
\frac{\cos x}{1 - \tan x} + \frac{\sin x \tan x}{\tan x - 1} = \sin x + \cos x
\]
**(8)**
\[
\tan^2 x \left(1 + \frac{1}{\tan^2 x}\right) = \frac{1}{\cos^2 x}
\]
**(9)**
\[
\frac{1 + \tan^2 x}{1 + \frac{1}{\tan^2 x}} = \tan^2 x
\]
**(10)**
\[
\frac{\tan x + \sin x}{\tan x - \sin x} = \frac{(1 + \cos x)^2}{\sin^2 x}
\]
Solution
**(1)**
We start with the left-hand side (LHS):
\[
\tan x+\frac{1}{\tan x}=\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}.
\]
Combine the two fractions over a common denominator:
\[
\frac{\sin^2x+\cos^2x}{\sin x\cos x}.
\]
Since
\[
\sin^2x+\cos^2x=1,
\]
the expression becomes
\[
\frac{1}{\sin x\cos x},
\]
which is the right-hand side (RHS).
---
**(3)**
The left-hand side is
\[
\frac{1}{\tan x}-\tan x=\frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}.
\]
Combine these fractions:
\[
\frac{\cos^2x-\sin^2x}{\sin x\cos x}.
\]
Recall that
\[
\cos^2x-\sin^2x=1-2\sin^2x
\]
(since both \(\cos^2x-\sin^2x\) and \(1-2\sin^2x\) equal \(\cos2x\)). Hence,
\[
\frac{\cos^2x-\sin^2x}{\sin x\cos x}=\frac{1-2\sin^2x}{\sin x\cos x},
\]
which proves the identity.
---
**(2)**
The left-hand side is
\[
\frac{1}{\sin \alpha}-\sin \alpha.
\]
Write over a common denominator:
\[
\frac{1-\sin^2\alpha}{\sin\alpha}.
\]
Using the Pythagorean identity, we have
\[
1-\sin^2\alpha=\cos^2\alpha.
\]
Thus,
\[
\frac{\cos^2\alpha}{\sin\alpha}.
\]
Now, the right-hand side is
\[
\frac{\cos\alpha}{\tan\alpha}=\frac{\cos\alpha}{\frac{\sin\alpha}{\cos\alpha}}=\frac{\cos^2\alpha}{\sin\alpha}.
\]
Both sides are equal.
---
**(5)**
Rewrite the left-hand side using the identity
\[
1+\tan^2\theta=\sec^2\theta=\frac{1}{\cos^2\theta}:
\]
\[
\frac{\tan^2\theta}{\tan^2\theta+1}=\tan^2\theta\cos^2\theta.
\]
Since
\[
\tan^2\theta=\frac{\sin^2\theta}{\cos^2\theta},
\]
we have
\[
\tan^2\theta\cos^2\theta=\frac{\sin^2\theta}{\cos^2\theta}\cdot\cos^2\theta=\sin^2\theta.
\]
---
**(6)**
Express \(\tan \theta\) in terms of sine and cosine:
\[
\frac{\tan\theta}{1-\tan^2\theta}=\frac{\frac{\sin\theta}{\cos\theta}}{1-\frac{\sin^2\theta}{\cos^2\theta}}.
\]
Combine the denominator:
\[
1-\frac{\sin^2\theta}{\cos^2\theta}=\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}.
\]
Thus,
\[
\frac{\frac{\sin\theta}{\cos\theta}}{\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}}=\frac{\sin\theta}{\cos\theta}\cdot\frac{\cos^2\theta}{\cos^2\theta-\sin^2\theta}=\frac{\sin\theta\cos\theta}{\cos^2\theta-\sin^2\theta}.
\]
---
**(7)**
Examine the expression:
\[
\frac{\cos x}{1-\tan x}+\frac{\sin x\,\tan x}{\tan x-1}.
\]
Notice that
\[
\tan x-1=-(1-\tan x).
\]
Thus, the second term can be rewritten as:
\[
\frac{\sin x\,\tan x}{\tan x-1}=-\frac{\sin x\,\tan x}{1-\tan x}.
\]
Now the expression becomes:
\[
\frac{\cos x}{1-\tan x}-\frac{\sin x\,\tan x}{1-\tan x}=\frac{\cos x-\sin x\,\tan x}{1-\tan x}.
\]
Express \(\tan x\) as \(\frac{\sin x}{\cos x}\):
\[
\sin x\,\tan x=\frac{\sin^2 x}{\cos x}.
\]
Thus, the numerator becomes:
\[
\cos x-\frac{\sin^2 x}{\cos x}=\frac{\cos^2 x-\sin^2 x}{\cos x}.
\]
The entire expression is then:
\[
\frac{\frac{\cos^2 x-\sin^2 x}{\cos x}}{1-\tan x}.
\]
Recall that
\[
1-\tan x=\frac{\cos x-\sin x}{\cos x},
\]
so we have:
\[
\frac{\cos^2 x-\sin^2 x}{\cos x-\sin x}.
\]
Notice that
\[
\cos^2 x-\sin^2 x=(\cos x-\sin x)(\cos x+\sin x).
\]
Cancel the common factor \((\cos x-\sin x)\):
\[
\frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x-\sin x}=\cos x+\sin x.
\]
---
**(8)**
Simplify the left-hand side:
\[
\tan^2 x\left(1+\frac{1}{\tan^2 x}\right)=\tan^2x+\tan^2x\cdot\frac{1}{\tan^2x}=\tan^2x+1.
\]
Recall the Pythagorean identity for tangent and secant:
\[
1+\tan^2x=\sec^2x=\frac{1}{\cos^2x}.
\]
---
**(9)**
Write the denominator with a common denominator:
\[
1+\frac{1}{\tan^2x}=\frac{\tan^2x+1}{\tan^2x}.
\]
Thus, the expression becomes:
\[
\frac{1+\tan^2x}{\frac{\tan^2x+1}{\tan^2x}}=\tan^2x.
\]
---
**(10)**
Rewrite \(\tan x\) as \(\frac{\sin x}{\cos x}\):
For the numerator:
\[
\tan x+\sin x=\frac{\sin x}{\cos x}+\sin x=\sin x\left(\frac{1}{\cos x}+1\right)=\frac{\sin x(1+\cos x)}{\cos x}.
\]
For the denominator:
\[
\tan x-\sin x=\frac{\sin x}{\cos x}-\sin x=\sin x\left(\frac{1}{\cos x}-1\right)=\frac{\sin x(1-\cos x)}{\cos x}.
\]
Divide the numerator by the denominator:
\[
\frac{\frac{\sin x(1+\cos x)}{\cos x}}{\frac{\sin x(1-\cos x)}{\cos x}}=\frac{1+\cos x}{1-\cos x}.
\]
Now, use the identity
\[
1-\cos^2x=\sin^2x,
\]
which can be rearranged as
\[
1-\cos x=\frac{\sin^2x}{1+\cos x},
\]
provided \(1+\cos x\neq 0\). Substitute into the expression:
\[
\frac{1+\cos x}{1-\cos x}=\frac{1+\cos x}{\frac{\sin^2x}{1+\cos x}}=\frac{(1+\cos x)^2}{\sin^2x}.
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution