Pregunta
upstudy study bank question image url

(b) Prove the following identities: (1) \( \tan x+\frac{1}{\tan x}=\frac{1}{\sin x \cos x} \) (3) \( \frac{1}{\tan x}-\tan x=\frac{1-2 \sin ^{2} x}{\sin x \cos x} \) (2) \( \frac{1}{\sin \alpha}-\sin \alpha=\frac{\cos \alpha}{\tan \alpha} \) (5) \( \frac{\tan ^{2} \theta}{\tan ^{2} \theta+1}=\sin ^{2} \theta \) (6) \( \frac{\tan \theta}{1-\tan ^{2} \theta}=\frac{\cos \theta \sin \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \) (7) \( \frac{\cos x}{1-\tan x}+\frac{\sin x \tan x}{\tan x-1}=\sin x+\cos x \) (8) \( \tan ^{2} x\left(1+\frac{1}{\tan ^{2} x}\right)=\frac{1}{\cos ^{2} x} \) (9) \( \frac{1+\tan ^{2} x}{1+\frac{1}{\tan ^{2} x}}=\tan ^{2} x \) (10) \( \frac{\tan x+\sin x}{\tan x-\sin x}=\frac{(1+\cos x)^{2}}{\sin ^{2} x} \) 123

Ask by Paul Morgan. in South Africa
Mar 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**(1)** \[ \tan x + \frac{1}{\tan x} = \frac{1}{\sin x \cos x} \] **(3)** \[ \frac{1}{\tan x} - \tan x = \frac{1 - 2 \sin^2 x}{\sin x \cos x} \] **(2)** \[ \frac{1}{\sin \alpha} - \sin \alpha = \frac{\cos \alpha}{\tan \alpha} \] **(5)** \[ \frac{\tan^2 \theta}{\tan^2 \theta + 1} = \sin^2 \theta \] **(6)** \[ \frac{\tan \theta}{1 - \tan^2 \theta} = \frac{\cos \theta \sin \theta}{\cos^2 \theta - \sin^2 \theta} \] **(7)** \[ \frac{\cos x}{1 - \tan x} + \frac{\sin x \tan x}{\tan x - 1} = \sin x + \cos x \] **(8)** \[ \tan^2 x \left(1 + \frac{1}{\tan^2 x}\right) = \frac{1}{\cos^2 x} \] **(9)** \[ \frac{1 + \tan^2 x}{1 + \frac{1}{\tan^2 x}} = \tan^2 x \] **(10)** \[ \frac{\tan x + \sin x}{\tan x - \sin x} = \frac{(1 + \cos x)^2}{\sin^2 x} \]

Solución

**(1)** We start with the left-hand side (LHS): \[ \tan x+\frac{1}{\tan x}=\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}. \] Combine the two fractions over a common denominator: \[ \frac{\sin^2x+\cos^2x}{\sin x\cos x}. \] Since \[ \sin^2x+\cos^2x=1, \] the expression becomes \[ \frac{1}{\sin x\cos x}, \] which is the right-hand side (RHS). --- **(3)** The left-hand side is \[ \frac{1}{\tan x}-\tan x=\frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}. \] Combine these fractions: \[ \frac{\cos^2x-\sin^2x}{\sin x\cos x}. \] Recall that \[ \cos^2x-\sin^2x=1-2\sin^2x \] (since both \(\cos^2x-\sin^2x\) and \(1-2\sin^2x\) equal \(\cos2x\)). Hence, \[ \frac{\cos^2x-\sin^2x}{\sin x\cos x}=\frac{1-2\sin^2x}{\sin x\cos x}, \] which proves the identity. --- **(2)** The left-hand side is \[ \frac{1}{\sin \alpha}-\sin \alpha. \] Write over a common denominator: \[ \frac{1-\sin^2\alpha}{\sin\alpha}. \] Using the Pythagorean identity, we have \[ 1-\sin^2\alpha=\cos^2\alpha. \] Thus, \[ \frac{\cos^2\alpha}{\sin\alpha}. \] Now, the right-hand side is \[ \frac{\cos\alpha}{\tan\alpha}=\frac{\cos\alpha}{\frac{\sin\alpha}{\cos\alpha}}=\frac{\cos^2\alpha}{\sin\alpha}. \] Both sides are equal. --- **(5)** Rewrite the left-hand side using the identity \[ 1+\tan^2\theta=\sec^2\theta=\frac{1}{\cos^2\theta}: \] \[ \frac{\tan^2\theta}{\tan^2\theta+1}=\tan^2\theta\cos^2\theta. \] Since \[ \tan^2\theta=\frac{\sin^2\theta}{\cos^2\theta}, \] we have \[ \tan^2\theta\cos^2\theta=\frac{\sin^2\theta}{\cos^2\theta}\cdot\cos^2\theta=\sin^2\theta. \] --- **(6)** Express \(\tan \theta\) in terms of sine and cosine: \[ \frac{\tan\theta}{1-\tan^2\theta}=\frac{\frac{\sin\theta}{\cos\theta}}{1-\frac{\sin^2\theta}{\cos^2\theta}}. \] Combine the denominator: \[ 1-\frac{\sin^2\theta}{\cos^2\theta}=\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}. \] Thus, \[ \frac{\frac{\sin\theta}{\cos\theta}}{\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}}=\frac{\sin\theta}{\cos\theta}\cdot\frac{\cos^2\theta}{\cos^2\theta-\sin^2\theta}=\frac{\sin\theta\cos\theta}{\cos^2\theta-\sin^2\theta}. \] --- **(7)** Examine the expression: \[ \frac{\cos x}{1-\tan x}+\frac{\sin x\,\tan x}{\tan x-1}. \] Notice that \[ \tan x-1=-(1-\tan x). \] Thus, the second term can be rewritten as: \[ \frac{\sin x\,\tan x}{\tan x-1}=-\frac{\sin x\,\tan x}{1-\tan x}. \] Now the expression becomes: \[ \frac{\cos x}{1-\tan x}-\frac{\sin x\,\tan x}{1-\tan x}=\frac{\cos x-\sin x\,\tan x}{1-\tan x}. \] Express \(\tan x\) as \(\frac{\sin x}{\cos x}\): \[ \sin x\,\tan x=\frac{\sin^2 x}{\cos x}. \] Thus, the numerator becomes: \[ \cos x-\frac{\sin^2 x}{\cos x}=\frac{\cos^2 x-\sin^2 x}{\cos x}. \] The entire expression is then: \[ \frac{\frac{\cos^2 x-\sin^2 x}{\cos x}}{1-\tan x}. \] Recall that \[ 1-\tan x=\frac{\cos x-\sin x}{\cos x}, \] so we have: \[ \frac{\cos^2 x-\sin^2 x}{\cos x-\sin x}. \] Notice that \[ \cos^2 x-\sin^2 x=(\cos x-\sin x)(\cos x+\sin x). \] Cancel the common factor \((\cos x-\sin x)\): \[ \frac{(\cos x-\sin x)(\cos x+\sin x)}{\cos x-\sin x}=\cos x+\sin x. \] --- **(8)** Simplify the left-hand side: \[ \tan^2 x\left(1+\frac{1}{\tan^2 x}\right)=\tan^2x+\tan^2x\cdot\frac{1}{\tan^2x}=\tan^2x+1. \] Recall the Pythagorean identity for tangent and secant: \[ 1+\tan^2x=\sec^2x=\frac{1}{\cos^2x}. \] --- **(9)** Write the denominator with a common denominator: \[ 1+\frac{1}{\tan^2x}=\frac{\tan^2x+1}{\tan^2x}. \] Thus, the expression becomes: \[ \frac{1+\tan^2x}{\frac{\tan^2x+1}{\tan^2x}}=\tan^2x. \] --- **(10)** Rewrite \(\tan x\) as \(\frac{\sin x}{\cos x}\): For the numerator: \[ \tan x+\sin x=\frac{\sin x}{\cos x}+\sin x=\sin x\left(\frac{1}{\cos x}+1\right)=\frac{\sin x(1+\cos x)}{\cos x}. \] For the denominator: \[ \tan x-\sin x=\frac{\sin x}{\cos x}-\sin x=\sin x\left(\frac{1}{\cos x}-1\right)=\frac{\sin x(1-\cos x)}{\cos x}. \] Divide the numerator by the denominator: \[ \frac{\frac{\sin x(1+\cos x)}{\cos x}}{\frac{\sin x(1-\cos x)}{\cos x}}=\frac{1+\cos x}{1-\cos x}. \] Now, use the identity \[ 1-\cos^2x=\sin^2x, \] which can be rearranged as \[ 1-\cos x=\frac{\sin^2x}{1+\cos x}, \] provided \(1+\cos x\neq 0\). Substitute into the expression: \[ \frac{1+\cos x}{1-\cos x}=\frac{1+\cos x}{\frac{\sin^2x}{1+\cos x}}=\frac{(1+\cos x)^2}{\sin^2x}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To understand how these identities work, it's essential to revisit some foundational trigonometric properties. For instance, knowing that \( \tan x = \frac{\sin x}{\cos x} \) allows you to substitute and manipulate expressions easily. This is especially useful in identities involving ubiquitous terms like \( \sin \) and \( \cos \). By practicing various substitutions, you can turn complex identities into more manageable equations! Another great way to engage with these identities is through visual aids and graphs. Sketching the unit circle or plotting sine, cosine, and tangent functions can help you see how these relationships play out visually. Observing how these functions behave at different angles gives you a deeper understanding not just of the identities themselves, but how they relate to the broader concept of periodicity in trigonometric functions. Plus, it’s a fun way to explore mathematical concepts!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad