Answer
After 6 years of investing \$170 monthly at 8% compounded monthly, the investment grows to approximately \$106,031.40 over the next 24 years without additional deposits.
Solution
Calculate the value by following steps:
- step0: Calculate:
\(170\left(\frac{\left(\left(1+\left(\frac{0.08}{12}\right)\right)^{12\times 6}-1\right)}{\left(\frac{0.08}{12}\right)}\right)\)
- step1: Remove the parentheses:
\(170\left(\frac{\left(1+\left(\frac{0.08}{12}\right)\right)^{12\times 6}-1}{\frac{0.08}{12}}\right)\)
- step2: Divide the terms:
\(170\left(\frac{\left(1+\frac{1}{150}\right)^{12\times 6}-1}{\frac{0.08}{12}}\right)\)
- step3: Add the numbers:
\(170\left(\frac{\left(\frac{151}{150}\right)^{12\times 6}-1}{\frac{0.08}{12}}\right)\)
- step4: Multiply the numbers:
\(170\left(\frac{\left(\frac{151}{150}\right)^{72}-1}{\frac{0.08}{12}}\right)\)
- step5: Divide the terms:
\(170\left(\frac{\left(\frac{151}{150}\right)^{72}-1}{\frac{1}{150}}\right)\)
- step6: Subtract the numbers:
\(170\left(\frac{\frac{151^{72}-150^{72}}{150^{72}}}{\frac{1}{150}}\right)\)
- step7: Divide the terms:
\(170\times \frac{151^{72}-150^{72}}{150^{71}}\)
- step8: Rewrite the expression:
\(10\times 17\times \frac{151^{72}-150^{72}}{150^{71}}\)
- step9: Rewrite the expression:
\(10\times 17\times \frac{151^{72}-150^{72}}{10^{71}\times 15^{71}}\)
- step10: Reduce the numbers:
\(17\times \frac{151^{72}-150^{72}}{10^{70}\times 15^{71}}\)
- step11: Multiply the fractions:
\(\frac{17\left(151^{72}-150^{72}\right)}{10^{70}\times 15^{71}}\)
- step12: Multiply:
\(\frac{17\times 151^{72}-17\times 150^{72}}{10^{70}\times 15^{71}}\)
Calculate or simplify the expression \( (170 * (((1 + (0.08 / 12))^(12 * 6) - 1) / (0.08 / 12))) * (1 + (0.08 / 12))^(12 * 24) \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(170\left(\frac{\left(\left(1+\left(\frac{0.08}{12}\right)\right)^{12\times 6}-1\right)}{\left(\frac{0.08}{12}\right)}\right)\right)\left(1+\left(\frac{0.08}{12}\right)\right)^{12\times 24}\)
- step1: Remove the parentheses:
\(170\left(\frac{\left(1+\left(\frac{0.08}{12}\right)\right)^{12\times 6}-1}{\frac{0.08}{12}}\right)\left(1+\left(\frac{0.08}{12}\right)\right)^{12\times 24}\)
- step2: Divide the terms:
\(170\left(\frac{\left(1+\left(\frac{0.08}{12}\right)\right)^{12\times 6}-1}{\frac{0.08}{12}}\right)\left(1+\frac{1}{150}\right)^{12\times 24}\)
- step3: Add the numbers:
\(170\left(\frac{\left(1+\left(\frac{0.08}{12}\right)\right)^{12\times 6}-1}{\frac{0.08}{12}}\right)\left(\frac{151}{150}\right)^{12\times 24}\)
- step4: Divide the terms:
\(170\left(\frac{\left(1+\frac{1}{150}\right)^{12\times 6}-1}{\frac{0.08}{12}}\right)\left(\frac{151}{150}\right)^{12\times 24}\)
- step5: Add the numbers:
\(170\left(\frac{\left(\frac{151}{150}\right)^{12\times 6}-1}{\frac{0.08}{12}}\right)\left(\frac{151}{150}\right)^{12\times 24}\)
- step6: Multiply the numbers:
\(170\left(\frac{\left(\frac{151}{150}\right)^{72}-1}{\frac{0.08}{12}}\right)\left(\frac{151}{150}\right)^{12\times 24}\)
- step7: Divide the terms:
\(170\left(\frac{\left(\frac{151}{150}\right)^{72}-1}{\frac{1}{150}}\right)\left(\frac{151}{150}\right)^{12\times 24}\)
- step8: Subtract the numbers:
\(170\left(\frac{\frac{151^{72}-150^{72}}{150^{72}}}{\frac{1}{150}}\right)\left(\frac{151}{150}\right)^{12\times 24}\)
- step9: Divide the terms:
\(170\times \frac{151^{72}-150^{72}}{150^{71}}\times \left(\frac{151}{150}\right)^{12\times 24}\)
- step10: Multiply the numbers:
\(170\times \frac{151^{72}-150^{72}}{150^{71}}\times \left(\frac{151}{150}\right)^{288}\)
- step11: Multiply the terms:
\(\frac{17\times 151^{72}-17\times 150^{72}}{10^{70}\times 15^{71}}\times \left(\frac{151}{150}\right)^{288}\)
- step12: Evaluate the power:
\(\frac{17\times 151^{72}-17\times 150^{72}}{10^{70}\times 15^{71}}\times \frac{151^{288}}{150^{288}}\)
- step13: Multiply the fractions:
\(\frac{\left(17\times 151^{72}-17\times 150^{72}\right)\times 151^{288}}{10^{70}\times 15^{71}\times 150^{288}}\)
- step14: Multiply:
\(\frac{17\times 151^{360}-17\times 150^{72}\times 151^{288}}{10^{70}\times 15^{71}\times 150^{288}}\)
To determine how much you will have in the end after investing \( \$170 \) a month for 6 years into an account earning \( 8\% \) compounded monthly, we can break the problem into two parts:
1. **Calculate the future value of the monthly investments after 6 years.**
2. **Calculate the future value of that amount after leaving it for another 24 years without additional deposits.**
### Step 1: Future Value of Monthly Investments
The formula for the future value of a series of monthly investments (ordinary annuity) is given by:
\[
FV = P \times \frac{(1 + r)^n - 1}{r}
\]
Where:
- \( P \) = monthly investment (\$170)
- \( r \) = monthly interest rate (annual rate / 12)
- \( n \) = total number of investments (months)
Given:
- Annual interest rate = \( 8\% \) or \( 0.08 \)
- Monthly interest rate \( r = \frac{0.08}{12} \)
- Total months \( n = 6 \times 12 = 72 \)
Now, substituting the values into the formula:
\[
FV = 170 \times \frac{(1 + \frac{0.08}{12})^{72} - 1}{\frac{0.08}{12}}
\]
Calculating this gives:
\[
FV \approx 15644.31
\]
### Step 2: Future Value After 24 More Years
Now, we take the amount from Step 1 and let it grow for another 24 years (or 288 months) without additional deposits. The formula for the future value of a single sum is:
\[
FV = PV \times (1 + r)^n
\]
Where:
- \( PV \) = present value from Step 1
- \( r \) = monthly interest rate
- \( n \) = total number of months (24 years = 288 months)
Substituting the values:
\[
FV = 15644.31 \times (1 + \frac{0.08}{12})^{288}
\]
Calculating this gives:
\[
FV \approx 106031.40
\]
### Conclusion
After performing the calculations, the final amount in the account after 30 years (6 years of deposits and 24 years of growth) is approximately \( \$106031.40 \).
Thus, the answer \( \$93791.36 \) is incorrect. The correct final amount is approximately \( \$106031.40 \).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution