Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To expand \( (2x - 1)^{5} \) using Pascal's triangle, first identify the row corresponding to the exponent 5, which is the 5th row: \( 1, 5, 10, 10, 5, 1 \). Then, the general formula for the binomial expansion is \( (a + b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \). For \( (2x - 1)^{5} \): - \( a = 2x \) - \( b = -1 \) - \( n = 5 \) Expanding it gives us: \[ \begin{align*} (2x - 1)^{5} &= \binom{5}{0} (2x)^{5} (-1)^{0} + \binom{5}{1} (2x)^{4} (-1)^{1} + \binom{5}{2} (2x)^{3} (-1)^{2} \\ &\quad + \binom{5}{3} (2x)^{2} (-1)^{3} + \binom{5}{4} (2x)^{1} (-1)^{4} + \binom{5}{5} (2x)^{0} (-1)^{5} \\ &= 1 \cdot (2x)^{5} - 5 \cdot (2x)^{4} + 10 \cdot (2x)^{3} - 10 \cdot (2x)^{2} + 5 \cdot (2x)^{1} - 1 \cdot (1) \\ &= 32x^{5} - 80x^{4} + 80x^{3} - 40x^{2} + 10x - 1. \end{align*} \] So, the expanded form is \( 32x^{5} - 80x^{4} + 80x^{3} - 40x^{2} + 10x - 1 \).