Question
upstudy study bank question image url

11. Даны вектора \( \vec{a}\{-2 ; 3 ;-1\}, \vec{b}\{1 ;-3 ; 2\} \). Най- дите \( |\vec{a}|+|2 \vec{b}| \). \( \begin{array}{ll}\text { A) } \sqrt{14} & \text { D) } 3 \sqrt{14} \\ \text { B) } 2 \sqrt{14} & \text { E) } 4 \sqrt{14} \\ \text { C) } 3 \sqrt{28} & \alpha \vec{b}(2 ;-6 ; 4)\end{array} \)

Ask by Craig Clark. in Kazakhstan
Feb 12,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

|a| + |2b| = 3√14

Solution

Для вектора a = {–2, 3, –1} находим модуль:  |a| = √[(-2)² + 3² + (-1)²] = √(4 + 9 + 1) = √14. Вектор b = {1, –3, 2}, тогда вектор 2b = {2, –6, 4} имеет модуль:  |2b| = √(2² + (–6)² + 4²) = √(4 + 36 + 16) = √56 = 2√14. Сумма этих модулей:  |a| + |2b| = √14 + 2√14 = 3√14. Ответ: 3√14, вариант D.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Чтобы найти \( |\vec{a}| + |2 \vec{b}| \), начнем с вычисления длины вектора \( \vec{a} \): \[ |\vec{a}| = \sqrt{(-2)^2 + 3^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14}. \] Теперь найдем вектор \( 2\vec{b} \): \[ 2\vec{b} = 2\{1; -3; 2\} = \{2; -6; 4\}. \] Теперь вычислим длину \( |2\vec{b}| \): \[ |2\vec{b}| = \sqrt{2^2 + (-6)^2 + 4^2} = \sqrt{4 + 36 + 16} = \sqrt{56} = 2\sqrt{14}. \] Теперь объединяем оба результата: \[ |\vec{a}| + |2\vec{b}| = \sqrt{14} + 2\sqrt{14} = 3\sqrt{14}. \] Таким образом, правильный ответ — \( D) 3\sqrt{14} \).

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy