Question
upstudy study bank question image url

Calcule \( \int \sin (x) e^{2 x} d x \)

Ask by Pena Haynes. in Brazil
Feb 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

A integral de \( e^{2x} \cdot \sin(x) \) dx é igual a \( \frac{e^{2x} (2 \sin(x) - \cos(x))}{5} + C \), onde C é uma constante.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

The Deep Dive

Para resolver la integral \( \int \sin (x) e^{2 x} \, dx \), podemos emplear el método de integración por partes o la técnica de integración por partes repetida, en este caso, es más conveniente utilizar la forma tabular. Primero, definimos: - \( u = \sin(x) \) y \( dv = e^{2x} dx \) Calculamos las derivadas y antiderivadas: - \( du = \cos(x) dx \) - \( v = \frac{1}{2} e^{2x} \) Aplicamos integración por partes: \[ \int u \, dv = uv - \int v \, du \] Sustituyendo: \[ \int \sin(x) e^{2x} \, dx = \sin(x) \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \cos(x) \, dx \] Ahora calculamos \( \int \cos(x) e^{2x} \, dx \) de la misma manera, definiendo: - \( u = \cos(x) \) y \( dv = e^{2x} \, dx \) Calculamos: - \( du = -\sin(x) dx \) - \( v = \frac{1}{2} e^{2x} \) Aplicando nuevamente la integración por partes, tenemos: \[ \int \cos(x) e^{2x} \, dx = \cos(x) \cdot \frac{1}{2} e^{2x} + \frac{1}{2} \int e^{2x} \sin(x) \, dx \] Sustituyendo de nuevo en nuestra ecuación original: \[ \int \sin(x) e^{2x} \, dx = \frac{1}{2} \sin(x) e^{2x} - \frac{1}{2} \left( \cos(x) \cdot \frac{1}{2} e^{2x} + \frac{1}{2} \int e^{2x} \sin(x) \, dx \right) \] Simplificando, obtenemos: \[ \int \sin(x) e^{2x} \, dx = \frac{1}{2} e^{2x} \sin(x) - \frac{1}{4} e^{2x} \cos(x) - \frac{1}{4} \int \sin(x) e^{2x} \, dx \] Multiplicamos toda la ecuación por 4 para deshacernos del denominador: \[ 4 \int \sin(x) e^{2x} \, dx = 2 e^{2x} \sin(x) - e^{2x} \cos(x) - \int \sin(x) e^{2x} \, dx \] Sumamos \( \int \sin(x) e^{2x} \, dx \) a ambos lados: \[ 5 \int \sin(x) e^{2x} \, dx = 2 e^{2x} \sin(x) - e^{2x} \cos(x) \] Por lo tanto, la expresión para la integral es: \[ \int \sin(x) e^{2x} \, dx = \frac{1}{5}(2 e^{2x} \sin(x) - e^{2x} \cos(x)) + C \] Finalmente, \[ \int \sin(x) e^{2x} \, dx = \frac{e^{2x}}{5}(2 \sin(x) - \cos(x)) + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy