Question
upstudy study bank question image url

\( f \tan \theta=\frac{3}{7} 1 \) find \( \cos \theta \)

Ask by Carlson Stanley. in Nigeria
Feb 17,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( \cos \theta = \frac{7f}{\sqrt{9 + 49f^2}} \)

Solution

To find \( \cos \theta \) given the equation \( f \tan \theta = \frac{3}{7} \), we first need to express \( \tan \theta \) in terms of \( \sin \theta \) and \( \cos \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] From the equation, we can express \( \tan \theta \) as: \[ \tan \theta = \frac{3}{7f} \] Next, we can use the identity relating \( \sin \theta \), \( \cos \theta \), and \( \tan \theta \): \[ \tan^2 \theta + 1 = \sec^2 \theta \] This can be rewritten in terms of \( \cos \theta \): \[ \frac{\sin^2 \theta}{\cos^2 \theta} + 1 = \frac{1}{\cos^2 \theta} \] Substituting \( \tan \theta \): \[ \left(\frac{3}{7f}\right)^2 + 1 = \frac{1}{\cos^2 \theta} \] Now, let's calculate \( \left(\frac{3}{7f}\right)^2 \): \[ \left(\frac{3}{7f}\right)^2 = \frac{9}{49f^2} \] Substituting this back into the equation gives: \[ \frac{9}{49f^2} + 1 = \frac{1}{\cos^2 \theta} \] Now, we can express \( 1 \) as \( \frac{49f^2}{49f^2} \): \[ \frac{9 + 49f^2}{49f^2} = \frac{1}{\cos^2 \theta} \] Taking the reciprocal: \[ \frac{49f^2}{9 + 49f^2} = \cos^2 \theta \] Finally, taking the square root to find \( \cos \theta \): \[ \cos \theta = \sqrt{\frac{49f^2}{9 + 49f^2}} \] Thus, the expression for \( \cos \theta \) is: \[ \cos \theta = \frac{7f}{\sqrt{9 + 49f^2}} \] This is the final answer for \( \cos \theta \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To find \( \cos \theta \) given that \( f \tan \theta = \frac{3}{7} \), we first need to clarify what \( f \) represents. Assuming \( f = 1 \) (since the equation seems a bit unclear), we have \( \tan \theta = \frac{3}{7} \). Using the identity \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we can create a right triangle where the opposite side is 3 and the adjacent side is 7. To find the hypotenuse (h), we use the Pythagorean theorem: \[ h = \sqrt{3^2 + 7^2} = \sqrt{9 + 49} = \sqrt{58}. \] Now, \( \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{7}{\sqrt{58}} \). Rationalizing the denominator gives: \[ \cos \theta = \frac{7 \sqrt{58}}{58}. \] So, \( \cos \theta = \frac{7 \sqrt{58}}{58} \) is your desired answer!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy