Pregunta
upstudy study bank question image url

\( f \tan \theta=\frac{3}{7} 1 \) find \( \cos \theta \)

Ask by Carlson Stanley. in Nigeria
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \cos \theta = \frac{7f}{\sqrt{9 + 49f^2}} \)

Solución

To find \( \cos \theta \) given the equation \( f \tan \theta = \frac{3}{7} \), we first need to express \( \tan \theta \) in terms of \( \sin \theta \) and \( \cos \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] From the equation, we can express \( \tan \theta \) as: \[ \tan \theta = \frac{3}{7f} \] Next, we can use the identity relating \( \sin \theta \), \( \cos \theta \), and \( \tan \theta \): \[ \tan^2 \theta + 1 = \sec^2 \theta \] This can be rewritten in terms of \( \cos \theta \): \[ \frac{\sin^2 \theta}{\cos^2 \theta} + 1 = \frac{1}{\cos^2 \theta} \] Substituting \( \tan \theta \): \[ \left(\frac{3}{7f}\right)^2 + 1 = \frac{1}{\cos^2 \theta} \] Now, let's calculate \( \left(\frac{3}{7f}\right)^2 \): \[ \left(\frac{3}{7f}\right)^2 = \frac{9}{49f^2} \] Substituting this back into the equation gives: \[ \frac{9}{49f^2} + 1 = \frac{1}{\cos^2 \theta} \] Now, we can express \( 1 \) as \( \frac{49f^2}{49f^2} \): \[ \frac{9 + 49f^2}{49f^2} = \frac{1}{\cos^2 \theta} \] Taking the reciprocal: \[ \frac{49f^2}{9 + 49f^2} = \cos^2 \theta \] Finally, taking the square root to find \( \cos \theta \): \[ \cos \theta = \sqrt{\frac{49f^2}{9 + 49f^2}} \] Thus, the expression for \( \cos \theta \) is: \[ \cos \theta = \frac{7f}{\sqrt{9 + 49f^2}} \] This is the final answer for \( \cos \theta \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find \( \cos \theta \) given that \( f \tan \theta = \frac{3}{7} \), we first need to clarify what \( f \) represents. Assuming \( f = 1 \) (since the equation seems a bit unclear), we have \( \tan \theta = \frac{3}{7} \). Using the identity \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we can create a right triangle where the opposite side is 3 and the adjacent side is 7. To find the hypotenuse (h), we use the Pythagorean theorem: \[ h = \sqrt{3^2 + 7^2} = \sqrt{9 + 49} = \sqrt{58}. \] Now, \( \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{7}{\sqrt{58}} \). Rationalizing the denominator gives: \[ \cos \theta = \frac{7 \sqrt{58}}{58}. \] So, \( \cos \theta = \frac{7 \sqrt{58}}{58} \) is your desired answer!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad