Answer
There are specific calculations for different values of \( r \) and \( n \), showing how \( r^n \) and \( S_n \) grow as \( n \) increases. The conjecture is that both \( r^n \) and \( S_n \) become very large as \( n \) approaches infinity when \( r > 1 \).
Solution
Let's solve the problem step by step.
### 1.1 Given:
\[
\mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
\]
#### 1.1.1 Write \( S_{n} \) in expanded form
To expand \( S_n \), we can distribute the terms in the formula:
\[
S_n = \frac{a \cdot r^n - a}{r - 1}
\]
This is the expanded form of \( S_n \).
#### 1.1.2 Which term in 1.1.1 is affected by the number of terms in \( n \)?
The term that is affected by the number of terms \( n \) is \( r^n \). As \( n \) increases, \( r^n \) grows exponentially, especially when \( r > 1 \).
### 1.2 CASE \( 1: r>1 \)
#### 1.2.1 If \( r=1.001 \) determine the values of:
##### (a) \( r^{200} \) and \( \mathrm{S}_{200} \)
First, we calculate \( r^{200} \):
\[
r^{200} = (1.001)^{200}
\]
Next, we calculate \( S_{200} \):
\[
S_{200} = \frac{a \left( (1.001)^{200} - 1 \right)}{1.001 - 1}
\]
##### (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \)
Now, we calculate \( r^{20000} \):
\[
r^{20000} = (1.001)^{20000}
\]
Next, we calculate \( S_{20000} \):
\[
S_{20000} = \frac{a \left( (1.001)^{20000} - 1 \right)}{1.001 - 1}
\]
#### 1.2.2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if:
##### (a) \( r=\frac{5}{2} \)
Calculating \( r^{200} \):
\[
r^{200} = \left(\frac{5}{2}\right)^{200}
\]
Calculating \( S_{200} \):
\[
S_{200} = \frac{a \left( \left(\frac{5}{2}\right)^{200} - 1 \right)}{\frac{5}{2} - 1}
\]
##### (b) \( r=3 \)
Calculating \( r^{200} \):
\[
r^{200} = 3^{200}
\]
Calculating \( S_{200} \):
\[
S_{200} = \frac{a \left( 3^{200} - 1 \right)}{3 - 1}
\]
#### 1.2.3 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \)
As \( n \) approaches infinity, if \( r > 1 \), both \( r^n \) and \( S_n \) will grow without bound. Specifically, \( S_n \) will approach \( \frac{a \cdot r^n}{r - 1} \) as the term \( -1 \) becomes negligible compared to \( r^n \). Thus, we can conjecture that:
\[
\lim_{n \to \infty} S_n \approx \frac{a \cdot r^n}{r - 1}
\]
Now, let's calculate the specific values for \( r^{200} \), \( S_{200} \), \( r^{20000} \), and \( S_{20000} \) for \( r = 1.001 \).
I'll perform these calculations now.
Simplify the expression by following steps:
- step0: :
\(3^{200}\)
Expand the expression \( (1.001)^{200} \)
Simplify the expression by following steps:
- step0: Evaluate the power:
\(1.001^{200}\)
- step1: Convert the expressions:
\(\left(\frac{1001}{1000}\right)^{200}\)
- step2: Evaluate the power:
\(\frac{1001^{200}}{1000^{200}}\)
Expand the expression \( (1.001)^{20000} \)
Simplify the expression by following steps:
- step0: Evaluate the power:
\(1.001^{20000}\)
- step1: Convert the expressions:
\(\left(\frac{1001}{1000}\right)^{20000}\)
- step2: Evaluate the power:
\(\frac{1001^{20000}}{1000^{20000}}\)
Expand the expression \( (\frac{5}{2})^{200} \)
Simplify the expression by following steps:
- step0: Evaluate the power:
\(\left(\frac{5}{2}\right)^{200}\)
- step1: Evaluate the power:
\(\frac{5^{200}}{2^{200}}\)
Here are the calculated values for the specified cases:
### 1.2.1 If \( r=1.001 \):
##### (a) \( r^{200} \) and \( \mathrm{S}_{200} \)
- \( r^{200} = (1.001)^{200} \approx 1.221386025 \)
- To calculate \( S_{200} \), we need to substitute \( r^{200} \) into the formula:
\[
S_{200} = \frac{a \left( (1.001)^{200} - 1 \right)}{1.001 - 1} = \frac{a \left( 1.221386025 - 1 \right)}{0.001} \approx \frac{a \cdot 0.221386025}{0.001} = 221.386025a
\]
##### (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \)
- \( r^{20000} = (1.001)^{20000} \approx 4.803409 \times 10^{8} \)
- For \( S_{20000} \):
\[
S_{20000} = \frac{a \left( (1.001)^{20000} - 1 \right)}{1.001 - 1} \approx \frac{a \left( 4.803409 \times 10^{8} - 1 \right)}{0.001} \approx 4.803409 \times 10^{11} a
\]
### 1.2.2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if:
##### (a) \( r=\frac{5}{2} \)
- \( r^{200} = \left(\frac{5}{2}\right)^{200} \approx 3.872592 \times 10^{79} \)
- For \( S_{200} \):
\[
S_{200} = \frac{a \left( \left(\frac{5}{2}\right)^{200} - 1 \right)}{\frac{5}{2} - 1} = \frac{a \left( 3.872592 \times 10^{79} - 1 \right)}{\frac{3}{2}} \approx \frac{a \cdot 3.872592 \times 10^{79}}{\frac{3}{2}} \approx 2.582194 \times 10^{79} a
\]
##### (b) \( r=3 \)
- \( r^{200} = 3^{200} \approx 2.65614 \times 10^{95} \)
- For \( S_{200} \):
\[
S_{200} = \frac{a \left( 3^{200} - 1 \right)}{3 - 1} = \frac{a \left( 2.65614 \times 10^{95} - 1 \right)}{2} \approx 1.32807 \times 10^{95} a
\]
### 1.2.3 Conjecture
As \( n \rightarrow \infty \):
- \( r^n \) and \( S_n \) both grow without bound.
- Specifically, \( S_n \) approaches \( \frac{a \cdot r^n}{r - 1} \) as the term \( -1 \) becomes negligible.
This concludes the detailed solution to the problem. If you have any further questions or need additional calculations, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution