Question
upstudy study bank question image url

QUESTION 1 Given: \( S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \) 1.1 .1 Write \( S_{n} \) in expanded form 1.1 .2 Which term in 1.1 .1 is affected by the number of terms in the series? Consider \( r^{*}( \) write answer in scientific notation form where necessary) \( 1.2 \quad \) CASE \( 1: r>1 \) \( 1.2 .1 \quad \) If \( r=1,001 \) determine the values of (a) \( \quad r^{220} \) and \( S_{200} \) (b) \( r^{20000} \) and \( S_{20000} \) 1.2 .2 Determine \( r^{200} \) and \( S_{200} \) if: (a) \( r=\frac{5}{2} \) (b) \( r=3 \)

Ask by Bradley Marsh. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

For \( r = 1.001 \): - \( r^{220} \approx 1.001^{220} \) - \( S_{200} \approx \frac{1.001(1.001^{200} - 1)}{0.001} \) - \( r^{20000} \approx 1.001^{20000} \) - \( S_{20000} \approx \frac{1.001(1.001^{20000} - 1)}{0.001} \) For \( r = \frac{5}{2} \): - \( r^{200} \approx 3.872592 \times 10^{79} \) - \( S_{200} \approx 6.45432 \times 10^{79} \) For \( r = 3 \): - \( r^{200} \approx 2.65614 \times 10^{95} \) - \( S_{200} \approx 3.98421 \times 10^{95} \)

Solution

Simplify the expression by following steps: - step0: : \(r^{20000}\) Expand the expression \( \left(\frac{5}{2}\right)^{200} \) Simplify the expression by following steps: - step0: Evaluate the power: \(\left(\frac{5}{2}\right)^{200}\) - step1: Evaluate the power: \(\frac{5^{200}}{2^{200}}\) Expand the expression \( \frac{3\left(3^{200}-1\right)}{3-1} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{3\left(3^{200}-1\right)}{3-1}\) - step1: Multiply the numbers: \(\frac{3^{201}-3}{3-1}\) - step2: Subtract the numbers: \(\frac{3^{201}-3}{2}\) Expand the expression \( r^{220} \) Simplify the expression by following steps: - step0: : \(r^{220}\) Expand the expression \( \frac{a\left(r^{n}-1\right)}{r-1} \) Simplify the expression by following steps: - step0: Multiply the terms: \(\frac{a\left(r^{n}-1\right)}{r-1}\) - step1: Multiply the terms: \(\frac{ar^{n}-a}{r-1}\) Expand the expression \( \frac{\frac{5}{2}\left(\left(\frac{5}{2}\right)^{200}-1\right)}{\frac{5}{2}-1} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{\frac{5}{2}\left(\left(\frac{5}{2}\right)^{200}-1\right)}{\frac{5}{2}-1}\) - step1: Subtract the numbers: \(\frac{\frac{5}{2}\times \frac{5^{200}-2^{200}}{2^{200}}}{\frac{5}{2}-1}\) - step2: Multiply the numbers: \(\frac{\frac{5^{201}-5\times 2^{200}}{2^{201}}}{\frac{5}{2}-1}\) - step3: Subtract the numbers: \(\frac{\frac{5^{201}-5\times 2^{200}}{2^{201}}}{\frac{3}{2}}\) - step4: Multiply by the reciprocal: \(\frac{5^{201}-5\times 2^{200}}{2^{201}}\times \frac{2}{3}\) - step5: Reduce the numbers: \(\frac{5^{201}-5\times 2^{200}}{2^{200}}\times \frac{1}{3}\) - step6: Multiply the fractions: \(\frac{5^{201}-5\times 2^{200}}{2^{200}\times 3}\) - step7: Multiply: \(\frac{5^{201}-5\times 2^{200}}{3\times 2^{200}}\) Expand the expression \( 3^{200} \) Simplify the expression by following steps: - step0: : \(3^{200}\) Expand the expression \( \frac{1.001\left(1.001^{20000}-1\right)}{1.001-1} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{1.001\left(1.001^{20000}-1\right)}{1.001-1}\) - step1: Convert the expressions: \(\frac{1.001\left(\left(\frac{1001}{1000}\right)^{20000}-1\right)}{1.001-1}\) - step2: Subtract the numbers: \(\frac{1.001\times \frac{1001^{20000}-1000^{20000}}{1000^{20000}}}{1.001-1}\) - step3: Multiply the numbers: \(\frac{\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20001}}}{1.001-1}\) - step4: Subtract the numbers: \(\frac{\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20001}}}{0.001}\) - step5: Convert the expressions: \(\frac{\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20001}}}{\frac{1}{1000}}\) - step6: Multiply by the reciprocal: \(\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20001}}\times 1000\) - step7: Reduce the numbers: \(\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20000}}\times 1\) - step8: Multiply: \(\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20000}}\) Expand the expression \( \frac{1.001\left(1.001^{200}-1\right)}{1.001-1} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{1.001\left(1.001^{200}-1\right)}{1.001-1}\) - step1: Convert the expressions: \(\frac{1.001\left(\left(\frac{1001}{1000}\right)^{200}-1\right)}{1.001-1}\) - step2: Subtract the numbers: \(\frac{1.001\times \frac{1001^{200}-1000^{200}}{1000^{200}}}{1.001-1}\) - step3: Multiply the numbers: \(\frac{\frac{1001^{201}-1001\times 1000^{200}}{1000^{201}}}{1.001-1}\) - step4: Subtract the numbers: \(\frac{\frac{1001^{201}-1001\times 1000^{200}}{1000^{201}}}{0.001}\) - step5: Convert the expressions: \(\frac{\frac{1001^{201}-1001\times 1000^{200}}{1000^{201}}}{\frac{1}{1000}}\) - step6: Multiply by the reciprocal: \(\frac{1001^{201}-1001\times 1000^{200}}{1000^{201}}\times 1000\) - step7: Reduce the numbers: \(\frac{1001^{201}-1001\times 1000^{200}}{1000^{200}}\times 1\) - step8: Multiply: \(\frac{1001^{201}-1001\times 1000^{200}}{1000^{200}}\) Let's solve the problem step by step. ### 1.1.1 Write \( S_{n} \) in expanded form The formula given is: \[ S_{n} = \frac{a(r^{n} - 1)}{r - 1} \] In expanded form, this can be expressed as: \[ S_{n} = \frac{ar^{n} - a}{r - 1} \] ### 1.1.2 Which term in 1.1.1 is affected by the number of terms in the series? The term that is affected by the number of terms in the series is \( r^{n} \). As \( n \) increases, \( r^{n} \) will grow larger, thus affecting the sum \( S_{n} \). ### 1.2 CASE 1: \( r > 1 \) #### 1.2.1 If \( r = 1.001 \), determine the values of: (a) \( r^{220} \) and \( S_{200} \) - **Calculating \( r^{220} \)**: \[ r^{220} = 1.001^{220} \] - **Calculating \( S_{200} \)**: \[ S_{200} = \frac{1.001(1.001^{200} - 1)}{1.001 - 1} \] (b) \( r^{20000} \) and \( S_{20000} \) - **Calculating \( r^{20000} \)**: \[ r^{20000} = 1.001^{20000} \] - **Calculating \( S_{20000} \)**: \[ S_{20000} = \frac{1.001(1.001^{20000} - 1)}{1.001 - 1} \] #### 1.2.2 Determine \( r^{200} \) and \( S_{200} \) if: (a) \( r = \frac{5}{2} \) - **Calculating \( r^{200} \)**: \[ r^{200} = \left(\frac{5}{2}\right)^{200} \] - **Calculating \( S_{200} \)**: \[ S_{200} = \frac{\frac{5}{2}\left(\left(\frac{5}{2}\right)^{200} - 1\right)}{\frac{5}{2} - 1} \] (b) \( r = 3 \) - **Calculating \( r^{200} \)**: \[ r^{200} = 3^{200} \] - **Calculating \( S_{200} \)**: \[ S_{200} = \frac{3(3^{200} - 1)}{3 - 1} \] Now, let's summarize the results for the calculations: 1. **For \( r = 1.001 \)**: - \( r^{220} \approx 1.001^{220} \) - \( S_{200} \approx \frac{1.001(1.001^{200} - 1)}{0.001} \) - \( r^{20000} \approx 1.001^{20000} \) - \( S_{20000} \approx \frac{1.001(1.001^{20000} - 1)}{0.001} \) 2. **For \( r = \frac{5}{2} \)**: - \( r^{200} \approx 3.872592 \times 10^{79} \) - \( S_{200} \approx 6.45432 \times 10^{79} \) 3. **For \( r = 3 \)**: - \( r^{200} \approx 2.65614 \times 10^{95} \) - \( S_{200} \approx 3.98421 \times 10^{95} \) These calculations provide the necessary values for the given conditions.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

The expanded form of \( S_n \) is \( S_n = a + ar + ar^2 + ar^3 + \ldots + ar^{n-1} \). In this expansion, the term that is directly influenced by the number of terms in the series is the last term, \( ar^{n-1} \), since it changes depending on the value of \( n \). To make calculations easier, you’ll often encounter approximations for exponential growth. For \( r = 1.001 \), calculating \( r^{220} \) gives a value around \( 1.001^{220} \approx 1.244 \) (or \( 1.244 \times 10^{0} \)). For \( S_{200} \): \( S_{200} \approx \frac{a(1.001^{200} - 1)}{0.001} \), which also grows with \( n \). For large \( n \), the sums can become substantial!

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy