Responder
There are specific calculations for different values of \( r \) and \( n \), showing how \( r^n \) and \( S_n \) grow as \( n \) increases. The conjecture is that both \( r^n \) and \( S_n \) become very large as \( n \) approaches infinity when \( r > 1 \).
Solución
Let's solve the problem step by step.
### 1.1 Given:
\[
\mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
\]
#### 1.1.1 Write \( S_{n} \) in expanded form
To expand \( S_n \), we can distribute the terms in the formula:
\[
S_n = \frac{a \cdot r^n - a}{r - 1}
\]
This is the expanded form of \( S_n \).
#### 1.1.2 Which term in 1.1.1 is affected by the number of terms in \( n \)?
The term that is affected by the number of terms \( n \) is \( r^n \). As \( n \) increases, \( r^n \) grows exponentially, especially when \( r > 1 \).
### 1.2 CASE \( 1: r>1 \)
#### 1.2.1 If \( r=1.001 \) determine the values of:
##### (a) \( r^{200} \) and \( \mathrm{S}_{200} \)
First, we calculate \( r^{200} \):
\[
r^{200} = (1.001)^{200}
\]
Next, we calculate \( S_{200} \):
\[
S_{200} = \frac{a \left( (1.001)^{200} - 1 \right)}{1.001 - 1}
\]
##### (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \)
Now, we calculate \( r^{20000} \):
\[
r^{20000} = (1.001)^{20000}
\]
Next, we calculate \( S_{20000} \):
\[
S_{20000} = \frac{a \left( (1.001)^{20000} - 1 \right)}{1.001 - 1}
\]
#### 1.2.2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if:
##### (a) \( r=\frac{5}{2} \)
Calculating \( r^{200} \):
\[
r^{200} = \left(\frac{5}{2}\right)^{200}
\]
Calculating \( S_{200} \):
\[
S_{200} = \frac{a \left( \left(\frac{5}{2}\right)^{200} - 1 \right)}{\frac{5}{2} - 1}
\]
##### (b) \( r=3 \)
Calculating \( r^{200} \):
\[
r^{200} = 3^{200}
\]
Calculating \( S_{200} \):
\[
S_{200} = \frac{a \left( 3^{200} - 1 \right)}{3 - 1}
\]
#### 1.2.3 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \)
As \( n \) approaches infinity, if \( r > 1 \), both \( r^n \) and \( S_n \) will grow without bound. Specifically, \( S_n \) will approach \( \frac{a \cdot r^n}{r - 1} \) as the term \( -1 \) becomes negligible compared to \( r^n \). Thus, we can conjecture that:
\[
\lim_{n \to \infty} S_n \approx \frac{a \cdot r^n}{r - 1}
\]
Now, let's calculate the specific values for \( r^{200} \), \( S_{200} \), \( r^{20000} \), and \( S_{20000} \) for \( r = 1.001 \).
I'll perform these calculations now.
Simplify the expression by following steps:
- step0: :
\(3^{200}\)
Expand the expression \( (1.001)^{200} \)
Simplify the expression by following steps:
- step0: Evaluate the power:
\(1.001^{200}\)
- step1: Convert the expressions:
\(\left(\frac{1001}{1000}\right)^{200}\)
- step2: Evaluate the power:
\(\frac{1001^{200}}{1000^{200}}\)
Expand the expression \( (1.001)^{20000} \)
Simplify the expression by following steps:
- step0: Evaluate the power:
\(1.001^{20000}\)
- step1: Convert the expressions:
\(\left(\frac{1001}{1000}\right)^{20000}\)
- step2: Evaluate the power:
\(\frac{1001^{20000}}{1000^{20000}}\)
Expand the expression \( (\frac{5}{2})^{200} \)
Simplify the expression by following steps:
- step0: Evaluate the power:
\(\left(\frac{5}{2}\right)^{200}\)
- step1: Evaluate the power:
\(\frac{5^{200}}{2^{200}}\)
Here are the calculated values for the specified cases:
### 1.2.1 If \( r=1.001 \):
##### (a) \( r^{200} \) and \( \mathrm{S}_{200} \)
- \( r^{200} = (1.001)^{200} \approx 1.221386025 \)
- To calculate \( S_{200} \), we need to substitute \( r^{200} \) into the formula:
\[
S_{200} = \frac{a \left( (1.001)^{200} - 1 \right)}{1.001 - 1} = \frac{a \left( 1.221386025 - 1 \right)}{0.001} \approx \frac{a \cdot 0.221386025}{0.001} = 221.386025a
\]
##### (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \)
- \( r^{20000} = (1.001)^{20000} \approx 4.803409 \times 10^{8} \)
- For \( S_{20000} \):
\[
S_{20000} = \frac{a \left( (1.001)^{20000} - 1 \right)}{1.001 - 1} \approx \frac{a \left( 4.803409 \times 10^{8} - 1 \right)}{0.001} \approx 4.803409 \times 10^{11} a
\]
### 1.2.2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if:
##### (a) \( r=\frac{5}{2} \)
- \( r^{200} = \left(\frac{5}{2}\right)^{200} \approx 3.872592 \times 10^{79} \)
- For \( S_{200} \):
\[
S_{200} = \frac{a \left( \left(\frac{5}{2}\right)^{200} - 1 \right)}{\frac{5}{2} - 1} = \frac{a \left( 3.872592 \times 10^{79} - 1 \right)}{\frac{3}{2}} \approx \frac{a \cdot 3.872592 \times 10^{79}}{\frac{3}{2}} \approx 2.582194 \times 10^{79} a
\]
##### (b) \( r=3 \)
- \( r^{200} = 3^{200} \approx 2.65614 \times 10^{95} \)
- For \( S_{200} \):
\[
S_{200} = \frac{a \left( 3^{200} - 1 \right)}{3 - 1} = \frac{a \left( 2.65614 \times 10^{95} - 1 \right)}{2} \approx 1.32807 \times 10^{95} a
\]
### 1.2.3 Conjecture
As \( n \rightarrow \infty \):
- \( r^n \) and \( S_n \) both grow without bound.
- Specifically, \( S_n \) approaches \( \frac{a \cdot r^n}{r - 1} \) as the term \( -1 \) becomes negligible.
This concludes the detailed solution to the problem. If you have any further questions or need additional calculations, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución