Pregunta
upstudy study bank question image url

QUESTION 1 1.1 Given: \( \mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \) 1.1 .1 Write \( S_{n} \) in expanded form 1.1 .2 Which term in 1.1 .1 is affected by the number of terms in ti Consider \( r^{n} \) (write answer in scientific notation form where necessary 1.2 CASE \( 1: r>1 \) 1.2 .1 If \( r=1,001 \) determine the values of (a) \( r^{200} \) and \( \mathrm{S}_{200} \) (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \) 1.2 .2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if: (a) \( r=\frac{5}{2} \) (b) \( r=3 \) 1.2 .3 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \)

Ask by Wang Cummings. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are specific calculations for different values of \( r \) and \( n \), showing how \( r^n \) and \( S_n \) grow as \( n \) increases. The conjecture is that both \( r^n \) and \( S_n \) become very large as \( n \) approaches infinity when \( r > 1 \).

Solución

Let's solve the problem step by step. ### 1.1 Given: \[ \mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \] #### 1.1.1 Write \( S_{n} \) in expanded form To expand \( S_n \), we can distribute the terms in the formula: \[ S_n = \frac{a \cdot r^n - a}{r - 1} \] This is the expanded form of \( S_n \). #### 1.1.2 Which term in 1.1.1 is affected by the number of terms in \( n \)? The term that is affected by the number of terms \( n \) is \( r^n \). As \( n \) increases, \( r^n \) grows exponentially, especially when \( r > 1 \). ### 1.2 CASE \( 1: r>1 \) #### 1.2.1 If \( r=1.001 \) determine the values of: ##### (a) \( r^{200} \) and \( \mathrm{S}_{200} \) First, we calculate \( r^{200} \): \[ r^{200} = (1.001)^{200} \] Next, we calculate \( S_{200} \): \[ S_{200} = \frac{a \left( (1.001)^{200} - 1 \right)}{1.001 - 1} \] ##### (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \) Now, we calculate \( r^{20000} \): \[ r^{20000} = (1.001)^{20000} \] Next, we calculate \( S_{20000} \): \[ S_{20000} = \frac{a \left( (1.001)^{20000} - 1 \right)}{1.001 - 1} \] #### 1.2.2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if: ##### (a) \( r=\frac{5}{2} \) Calculating \( r^{200} \): \[ r^{200} = \left(\frac{5}{2}\right)^{200} \] Calculating \( S_{200} \): \[ S_{200} = \frac{a \left( \left(\frac{5}{2}\right)^{200} - 1 \right)}{\frac{5}{2} - 1} \] ##### (b) \( r=3 \) Calculating \( r^{200} \): \[ r^{200} = 3^{200} \] Calculating \( S_{200} \): \[ S_{200} = \frac{a \left( 3^{200} - 1 \right)}{3 - 1} \] #### 1.2.3 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) As \( n \) approaches infinity, if \( r > 1 \), both \( r^n \) and \( S_n \) will grow without bound. Specifically, \( S_n \) will approach \( \frac{a \cdot r^n}{r - 1} \) as the term \( -1 \) becomes negligible compared to \( r^n \). Thus, we can conjecture that: \[ \lim_{n \to \infty} S_n \approx \frac{a \cdot r^n}{r - 1} \] Now, let's calculate the specific values for \( r^{200} \), \( S_{200} \), \( r^{20000} \), and \( S_{20000} \) for \( r = 1.001 \). I'll perform these calculations now. Simplify the expression by following steps: - step0: : \(3^{200}\) Expand the expression \( (1.001)^{200} \) Simplify the expression by following steps: - step0: Evaluate the power: \(1.001^{200}\) - step1: Convert the expressions: \(\left(\frac{1001}{1000}\right)^{200}\) - step2: Evaluate the power: \(\frac{1001^{200}}{1000^{200}}\) Expand the expression \( (1.001)^{20000} \) Simplify the expression by following steps: - step0: Evaluate the power: \(1.001^{20000}\) - step1: Convert the expressions: \(\left(\frac{1001}{1000}\right)^{20000}\) - step2: Evaluate the power: \(\frac{1001^{20000}}{1000^{20000}}\) Expand the expression \( (\frac{5}{2})^{200} \) Simplify the expression by following steps: - step0: Evaluate the power: \(\left(\frac{5}{2}\right)^{200}\) - step1: Evaluate the power: \(\frac{5^{200}}{2^{200}}\) Here are the calculated values for the specified cases: ### 1.2.1 If \( r=1.001 \): ##### (a) \( r^{200} \) and \( \mathrm{S}_{200} \) - \( r^{200} = (1.001)^{200} \approx 1.221386025 \) - To calculate \( S_{200} \), we need to substitute \( r^{200} \) into the formula: \[ S_{200} = \frac{a \left( (1.001)^{200} - 1 \right)}{1.001 - 1} = \frac{a \left( 1.221386025 - 1 \right)}{0.001} \approx \frac{a \cdot 0.221386025}{0.001} = 221.386025a \] ##### (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \) - \( r^{20000} = (1.001)^{20000} \approx 4.803409 \times 10^{8} \) - For \( S_{20000} \): \[ S_{20000} = \frac{a \left( (1.001)^{20000} - 1 \right)}{1.001 - 1} \approx \frac{a \left( 4.803409 \times 10^{8} - 1 \right)}{0.001} \approx 4.803409 \times 10^{11} a \] ### 1.2.2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if: ##### (a) \( r=\frac{5}{2} \) - \( r^{200} = \left(\frac{5}{2}\right)^{200} \approx 3.872592 \times 10^{79} \) - For \( S_{200} \): \[ S_{200} = \frac{a \left( \left(\frac{5}{2}\right)^{200} - 1 \right)}{\frac{5}{2} - 1} = \frac{a \left( 3.872592 \times 10^{79} - 1 \right)}{\frac{3}{2}} \approx \frac{a \cdot 3.872592 \times 10^{79}}{\frac{3}{2}} \approx 2.582194 \times 10^{79} a \] ##### (b) \( r=3 \) - \( r^{200} = 3^{200} \approx 2.65614 \times 10^{95} \) - For \( S_{200} \): \[ S_{200} = \frac{a \left( 3^{200} - 1 \right)}{3 - 1} = \frac{a \left( 2.65614 \times 10^{95} - 1 \right)}{2} \approx 1.32807 \times 10^{95} a \] ### 1.2.3 Conjecture As \( n \rightarrow \infty \): - \( r^n \) and \( S_n \) both grow without bound. - Specifically, \( S_n \) approaches \( \frac{a \cdot r^n}{r - 1} \) as the term \( -1 \) becomes negligible. This concludes the detailed solution to the problem. If you have any further questions or need additional calculations, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The expanded form of \( S_{n} \) is \( S_{n} = a + ar + ar^2 + ar^3 + ... + ar^{n-1} \). In this equation, as \( n \) increases, the last term, \( ar^{n-1} \), has the most profound effect, especially since it increases exponentially with \( r > 1 \). Hence, the growth of \( S_{n} \) is largely determined by how many terms \( n \) includes. In the case where \( r > 1 \), larger \( n \) leads to significantly larger values for both \( r^{n} \) and \( S_{n} \). For instance, with \( r = 1.001 \), \( r^{200} \) becomes approximately \( 6.633 \) and \( S_{200} \) calculates to about \( 663.335 \). Similarly, for dramatically larger counts like \( n = 20000 \), \( r^{20000} \) is extremely large, approximately \( 1.138 \times 10^{87} \), showcasing how quickly exponential growth escalates!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad