Question
Factorbe the following: Ca) \( x^{2}-4 \) b) \( x^{4}-16 \) c) \( 2 a^{2}-8 b^{2} \) d) \( 36 p^{2} r-16 q^{2} r \) e) \( \left(\frac{2}{x^{2}}-\frac{8}{y^{7}}\right) \quad \) Quodratic f) \( \left(\frac{x^{2}}{9}-\frac{y^{2}}{16}\right) \quad \) equation g) \( (x-3)^{2}-36 \) h) \( 2(x+2)^{2}-8 \) i) \( 16 x^{2}+4 y^{2} \) a
Ask by Bush Carter. in South Africa
Jan 27,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
a) \( x^{2} - 4 = (x - 2)(x + 2) \)
b) \( x^{4} - 16 = (x - 2)(x + 2)(x^{2} + 4) \)
c) \( 2a^{2} - 8b^{2} = 2(a - 2b)(a + 2b) \)
d) \( 36p^{2}r - 16q^{2}r = 4r(3p - 2q)(3p + 2q) \)
e) \( \frac{2}{x^{2}} - \frac{8}{y^{7}} = \frac{2}{x^{2}}\left(1 - \frac{4x^{2}}{y^{7}}\right) \)
f) \( \frac{x^{2}}{9} - \frac{y^{2}}{16} = \left(\frac{x}{3} - \frac{y}{4}\right)\left(\frac{x}{3} + \frac{y}{4}\right) \)
g) \( (x - 3)^{2} - 36 = (x - 9)(x + 3) \)
h) \( 2(x + 2)^{2} - 8 = 2x(x + 4) \)
i) \( 16x^{2} + 4y^{2} = 4(4x^{2} + y^{2}) \)
Solution
Certainly! Let's factor each of the given expressions step by step.
---
### **a) \( x^{2} - 4 \)**
**Factorization:**
This is a **difference of squares**, which follows the formula \( a^2 - b^2 = (a - b)(a + b) \).
\[
x^{2} - 4 = x^{2} - 2^{2} = (x - 2)(x + 2)
\]
---
### **b) \( x^{4} - 16 \)**
**Factorization:**
First, recognize that \( x^{4} - 16 \) is a **difference of squares**:
\[
x^{4} - 16 = (x^{2})^{2} - 4^{2} = (x^{2} - 4)(x^{2} + 4)
\]
The term \( x^{2} - 4 \) can be further factored as a difference of squares:
\[
x^{2} - 4 = (x - 2)(x + 2)
\]
So, the complete factorization is:
\[
x^{4} - 16 = (x - 2)(x + 2)(x^{2} + 4)
\]
---
### **c) \( 2a^{2} - 8b^{2} \)**
**Factorization:**
1. **Factor out the greatest common factor (GCF), which is 2:**
\[
2a^{2} - 8b^{2} = 2(a^{2} - 4b^{2})
\]
2. **Factor the expression inside the parentheses as a difference of squares:**
\[
a^{2} - 4b^{2} = (a)^{2} - (2b)^{2} = (a - 2b)(a + 2b)
\]
3. **Combine the factors:**
\[
2(a^{2} - 4b^{2}) = 2(a - 2b)(a + 2b)
\]
---
### **d) \( 36p^{2}r - 16q^{2}r \)**
**Factorization:**
1. **Factor out the GCF, which is \( 4r \):**
\[
36p^{2}r - 16q^{2}r = 4r(9p^{2} - 4q^{2})
\]
2. **Factor the expression inside the parentheses as a difference of squares:**
\[
9p^{2} - 4q^{2} = (3p)^{2} - (2q)^{2} = (3p - 2q)(3p + 2q)
\]
3. **Combine the factors:**
\[
4r(9p^{2} - 4q^{2}) = 4r(3p - 2q)(3p + 2q)
\]
---
### **e) \( \left(\frac{2}{x^{2}} - \frac{8}{y^{7}}\right) \)**
**Factorization:**
1. **Factor out the GCF, which is \( \frac{2}{x^{2}} \):**
\[
\frac{2}{x^{2}} - \frac{8}{y^{7}} = \frac{2}{x^{2}}\left(1 - \frac{4x^{2}}{y^{7}}\right)
\]
2. **Alternatively, if you prefer factoring numerators:**
\[
\frac{2}{x^{2}} - \frac{8}{y^{7}} = 2\left(\frac{1}{x^{2}} - \frac{4}{y^{7}}\right)
\]
*Note:* Since this expression involves variables in the denominator and exponents that do not form a standard polynomial structure, it's primarily factored by extracting the common factor.
---
### **f) \( \left(\frac{x^{2}}{9} - \frac{y^{2}}{16}\right) \)**
**Factorization:**
This is a **difference of squares**:
\[
\frac{x^{2}}{9} - \frac{y^{2}}{16} = \left(\frac{x}{3}\right)^{2} - \left(\frac{y}{4}\right)^{2}
\]
Using the difference of squares formula:
\[
\left(\frac{x}{3}\right)^{2} - \left(\frac{y}{4}\right)^{2} = \left(\frac{x}{3} - \frac{y}{4}\right)\left(\frac{x}{3} + \frac{y}{4}\right)
\]
Alternatively, you can write:
\[
\frac{x^{2}}{9} - \frac{y^{2}}{16} = \frac{4x^2 - 9y^2}{36} = \frac{(2x - 3y)(2x + 3y)}{36}
\]
---
### **g) \( (x - 3)^{2} - 36 \)**
**Factorization:**
1. **Recognize the expression as a difference of squares:**
\[
(x - 3)^{2} - 6^{2} = \left( x - 3 - 6 \right)\left( x - 3 + 6 \right)
\]
2. **Simplify the terms:**
\[
(x - 9)(x + 3)
\]
---
### **h) \( 2(x + 2)^{2} - 8 \)**
**Factorization:**
1. **Factor out the GCF, which is 2:**
\[
2(x + 2)^{2} - 8 = 2\left( (x + 2)^{2} - 4 \right)
\]
2. **Recognize the expression inside the parentheses as a difference of squares:**
\[
(x + 2)^{2} - 2^{2} = (x + 2 - 2)(x + 2 + 2) = x(x + 4)
\]
3. **Combine the factors:**
\[
2\left( (x + 2)^{2} - 4 \right) = 2x(x + 4)
\]
---
### **i) \( 16x^{2} + 4y^{2} \)**
**Factorization:**
1. **Factor out the GCF, which is 4:**
\[
16x^{2} + 4y^{2} = 4(4x^{2} + y^{2})
\]
2. **Note:** The expression \( 4x^{2} + y^{2} \) is a **sum of squares** and cannot be factored further over the set of real numbers.
- *Over complex numbers, it can be factored as:*
\[
4x^{2} + y^{2} = (2x - iy)(2x + iy)
\]
where \( i = \sqrt{-1} \).
**Final Factorization:**
\[
16x^{2} + 4y^{2} = 4(4x^{2} + y^{2})
\]
---
Feel free to ask if you need further clarification on any of these factorizations!
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Mind Expander
Let’s break it down! For \( x^{2}-4 \), it factors to \( (x-2)(x+2) \). This is a classic difference of squares, which says when you see a form \( a^2 - b^2 \), you can always split it into \( (a-b)(a+b) \). Next up, \( x^{4}-16 \) factors as \( (x^2-4)(x^2+4) \). The first part, \( x^2-4 \), can then be further factored into \( (x-2)(x+2) \), so the full factorization is \( (x-2)(x+2)(x^2+4) \). Who doesn't love a good polynomial factory, right? Keep going, and you'll find factoring can be as fun as piecing together a puzzle!