Factorbe the following: Ca) \( x^{2}-4 \) b) \( x^{4}-16 \) c) \( 2 a^{2}-8 b^{2} \) d) \( 36 p^{2} r-16 q^{2} r \) e) \( \left(\frac{2}{x^{2}}-\frac{8}{y^{7}}\right) \quad \) Quodratic f) \( \left(\frac{x^{2}}{9}-\frac{y^{2}}{16}\right) \quad \) equation g) \( (x-3)^{2}-36 \) h) \( 2(x+2)^{2}-8 \) i) \( 16 x^{2}+4 y^{2} \) a
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Let’s break it down! For \( x^{2}-4 \), it factors to \( (x-2)(x+2) \). This is a classic difference of squares, which says when you see a form \( a^2 - b^2 \), you can always split it into \( (a-b)(a+b) \). Next up, \( x^{4}-16 \) factors as \( (x^2-4)(x^2+4) \). The first part, \( x^2-4 \), can then be further factored into \( (x-2)(x+2) \), so the full factorization is \( (x-2)(x+2)(x^2+4) \). Who doesn't love a good polynomial factory, right? Keep going, and you'll find factoring can be as fun as piecing together a puzzle!
