Answer
Aquí están las respuestas a los problemas:
1) \( \sqrt{\frac{4}{9}} = \frac{2}{3} \) o \( 0.6667 \).
2) \( \sqrt{\frac{1}{9}} \cdot \sqrt{\frac{81}{4}} \cdot \sqrt{\frac{49}{36}} = \frac{7}{4} \) o \( 1.75 \).
3) \( \sqrt{0,25} + \sqrt[3]{0,125} = \frac{2 + \sqrt{2}}{4} \) o \( 0.8536 \).
4) \( \sqrt[4]{16} \cdot \left(\sqrt[3]{\frac{x^{3}}{7}}\right) = \frac{32\sqrt{3} \cdot x^{3}}{7} \).
5) \( \sqrt[4]{\frac{3 x^{4}}{16}} = \frac{\sqrt{3} \cdot x^{4}}{16} \).
6) \( \sqrt[1]{-0,027} = -0.027 \) o \( -\frac{27}{1000} \).
7) \( \sqrt{\frac{400}{289}} = \frac{20}{17} \) o \( 1.1765 \).
8) \( \sqrt{\frac{16}{81}} - 3 \sqrt{\frac{25}{9}} + \sqrt{\frac{1}{9}} = -\frac{38}{9} \) o \( -4.2222 \).
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{1}\times \left(-0.027\right)\)
- step1: Simplify the root:
\(1\times \left(-0.027\right)\)
- step2: Multiply:
\(-0.027\)
Calculate or simplify the expression \( \sqrt(16/81) - 3*\sqrt(25/9) + \sqrt(1/9) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\frac{16}{81}}-3\sqrt{\frac{25}{9}}+\sqrt{\frac{1}{9}}\)
- step1: Simplify the root:
\(\frac{4}{9}-3\sqrt{\frac{25}{9}}+\sqrt{\frac{1}{9}}\)
- step2: Simplify the root:
\(\frac{4}{9}-3\times \frac{5}{3}+\sqrt{\frac{1}{9}}\)
- step3: Simplify the root:
\(\frac{4}{9}-3\times \frac{5}{3}+\frac{1}{3}\)
- step4: Multiply the numbers:
\(\frac{4}{9}-5+\frac{1}{3}\)
- step5: Reduce fractions to a common denominator:
\(\frac{4}{9}-\frac{5\times 9}{9}+\frac{3}{3\times 3}\)
- step6: Multiply the numbers:
\(\frac{4}{9}-\frac{5\times 9}{9}+\frac{3}{9}\)
- step7: Transform the expression:
\(\frac{4-5\times 9+3}{9}\)
- step8: Multiply the numbers:
\(\frac{4-45+3}{9}\)
- step9: Calculate:
\(\frac{-38}{9}\)
- step10: Rewrite the fraction:
\(-\frac{38}{9}\)
Calculate or simplify the expression \( \sqrt(4)(16) * (\sqrt(3)(x^3/7)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{4}\times 16\left(\sqrt{3}\times \frac{x^{3}}{7}\right)\)
- step1: Remove the parentheses:
\(\sqrt{4}\times 16\sqrt{3}\times \frac{x^{3}}{7}\)
- step2: Simplify the root:
\(2\times 16\sqrt{3}\times \frac{x^{3}}{7}\)
- step3: Multiply the terms:
\(32\sqrt{3}\times \frac{x^{3}}{7}\)
- step4: Multiply the terms:
\(\frac{32\sqrt{3}\times x^{3}}{7}\)
Calculate or simplify the expression \( \sqrt(4/9) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\frac{4}{9}}\)
- step1: Use the properties of radicals:
\(\frac{\sqrt{4}}{\sqrt{9}}\)
- step2: Simplify the expression:
\(\frac{2}{3}\)
Calculate or simplify the expression \( \sqrt(1/9) * \sqrt(81/4) * \sqrt(49/36) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\frac{1}{9}}\times \sqrt{\frac{81}{4}}\times \sqrt{\frac{49}{36}}\)
- step1: Simplify the root:
\(\frac{1}{3}\sqrt{\frac{81}{4}}\times \sqrt{\frac{49}{36}}\)
- step2: Simplify the root:
\(\frac{1}{3}\times \frac{9}{2}\sqrt{\frac{49}{36}}\)
- step3: Simplify the root:
\(\frac{1}{3}\times \frac{9}{2}\times \frac{7}{6}\)
- step4: Multiply the terms:
\(\frac{3}{2}\times \frac{7}{6}\)
- step5: Reduce the numbers:
\(\frac{1}{2}\times \frac{7}{2}\)
- step6: Multiply the fractions:
\(\frac{7}{2\times 2}\)
- step7: Multiply:
\(\frac{7}{4}\)
Calculate or simplify the expression \( \sqrt(400/289) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\frac{400}{289}}\)
- step1: Use the properties of radicals:
\(\frac{\sqrt{400}}{\sqrt{289}}\)
- step2: Simplify the expression:
\(\frac{20}{17}\)
Calculate or simplify the expression \( \sqrt(3)(x^4/16) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{3}\times \frac{x^{4}}{16}\)
- step1: Multiply the terms:
\(\frac{\sqrt{3}\times x^{4}}{16}\)
Calculate or simplify the expression \( \sqrt(0.25) + \sqrt(0.125) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{0.25}+\sqrt{0.125}\)
- step1: Simplify the root:
\(\frac{1}{2}+\sqrt{0.125}\)
- step2: Simplify the root:
\(\frac{1}{2}+\frac{\sqrt{2}}{4}\)
- step3: Reduce fractions to a common denominator:
\(\frac{2}{2\times 2}+\frac{\sqrt{2}}{4}\)
- step4: Multiply the numbers:
\(\frac{2}{4}+\frac{\sqrt{2}}{4}\)
- step5: Transform the expression:
\(\frac{2+\sqrt{2}}{4}\)
Aquí están las soluciones a los problemas planteados, aplicando el concepto de raíz:
1) \( \sqrt{\frac{4}{9}} = \frac{2}{3} \) o aproximadamente \( 0.6667 \).
2) \( \sqrt{\frac{1}{9}} \cdot \sqrt{\frac{81}{4}} \cdot \sqrt{\frac{49}{36}} = \frac{7}{4} \) o \( 1.75 \).
3) \( \sqrt{0,25} + \sqrt[3]{0,125} = \frac{2 + \sqrt{2}}{4} \) o aproximadamente \( 0.8536 \).
4) \( \sqrt[4]{16} \cdot \left(\sqrt[3]{\frac{x^{3}}{7}}\right) = \frac{32\sqrt{3} \cdot x^{3}}{7} \).
5) \( \sqrt[4]{\frac{3 x^{4}}{16}} = \frac{\sqrt{3} \cdot x^{4}}{16} \).
6) \( \sqrt[1]{-0,027} = -0.027 \) o \( -\frac{27}{1000} \).
7) \( \sqrt{\frac{400}{289}} = \frac{20}{17} \) o aproximadamente \( 1.1765 \).
8) \( \sqrt{\frac{16}{81}} - 3 \sqrt{\frac{25}{9}} + \sqrt{\frac{1}{9}} = -\frac{38}{9} \) o aproximadamente \( -4.2222 \).
Si necesitas más detalles sobre algún paso o concepto, no dudes en preguntar.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution