Question
upstudy study bank question image url

Resuclva aplicando el concepto de raíz. \( \mathbb{I}^{\text {Recuerde que }}(\sqrt[{\sqrt{a}}]{ })^{n}=(\sqrt[{\sqrt{a^{n}}}]{)}=a 1 \) 1) \( \sqrt{\frac{4}{9}}= \) 2) \( \sqrt{\frac{1}{9}} \cdot \sqrt{\frac{81}{4}} \cdot \sqrt{\frac{49}{36}}= \) 3) \( \sqrt{0,25}+\sqrt[3]{0,125}= \) 4) \( \sqrt[4]{16} \cdot\left(\sqrt[3]{\frac{x^{3}}{7}}\right)= \) 5) \( \sqrt[4]{\frac{3 x^{4}}{16}}= \) 6) \( \sqrt[1]{-0,027}= \) 7) \( \sqrt{\frac{400}{289}}= \) 8) \( \sqrt{\frac{16}{81}}-3 \sqrt{\frac{25}{9}}+\sqrt{\frac{1}{9}}= \)

Ask by Boone Perkins. in Colombia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Aquí están las respuestas a los problemas: 1) \( \sqrt{\frac{4}{9}} = \frac{2}{3} \) o \( 0.6667 \). 2) \( \sqrt{\frac{1}{9}} \cdot \sqrt{\frac{81}{4}} \cdot \sqrt{\frac{49}{36}} = \frac{7}{4} \) o \( 1.75 \). 3) \( \sqrt{0,25} + \sqrt[3]{0,125} = \frac{2 + \sqrt{2}}{4} \) o \( 0.8536 \). 4) \( \sqrt[4]{16} \cdot \left(\sqrt[3]{\frac{x^{3}}{7}}\right) = \frac{32\sqrt{3} \cdot x^{3}}{7} \). 5) \( \sqrt[4]{\frac{3 x^{4}}{16}} = \frac{\sqrt{3} \cdot x^{4}}{16} \). 6) \( \sqrt[1]{-0,027} = -0.027 \) o \( -\frac{27}{1000} \). 7) \( \sqrt{\frac{400}{289}} = \frac{20}{17} \) o \( 1.1765 \). 8) \( \sqrt{\frac{16}{81}} - 3 \sqrt{\frac{25}{9}} + \sqrt{\frac{1}{9}} = -\frac{38}{9} \) o \( -4.2222 \).

Solution

Calculate the value by following steps: - step0: Calculate: \(\sqrt{1}\times \left(-0.027\right)\) - step1: Simplify the root: \(1\times \left(-0.027\right)\) - step2: Multiply: \(-0.027\) Calculate or simplify the expression \( \sqrt(16/81) - 3*\sqrt(25/9) + \sqrt(1/9) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{16}{81}}-3\sqrt{\frac{25}{9}}+\sqrt{\frac{1}{9}}\) - step1: Simplify the root: \(\frac{4}{9}-3\sqrt{\frac{25}{9}}+\sqrt{\frac{1}{9}}\) - step2: Simplify the root: \(\frac{4}{9}-3\times \frac{5}{3}+\sqrt{\frac{1}{9}}\) - step3: Simplify the root: \(\frac{4}{9}-3\times \frac{5}{3}+\frac{1}{3}\) - step4: Multiply the numbers: \(\frac{4}{9}-5+\frac{1}{3}\) - step5: Reduce fractions to a common denominator: \(\frac{4}{9}-\frac{5\times 9}{9}+\frac{3}{3\times 3}\) - step6: Multiply the numbers: \(\frac{4}{9}-\frac{5\times 9}{9}+\frac{3}{9}\) - step7: Transform the expression: \(\frac{4-5\times 9+3}{9}\) - step8: Multiply the numbers: \(\frac{4-45+3}{9}\) - step9: Calculate: \(\frac{-38}{9}\) - step10: Rewrite the fraction: \(-\frac{38}{9}\) Calculate or simplify the expression \( \sqrt(4)(16) * (\sqrt(3)(x^3/7)) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{4}\times 16\left(\sqrt{3}\times \frac{x^{3}}{7}\right)\) - step1: Remove the parentheses: \(\sqrt{4}\times 16\sqrt{3}\times \frac{x^{3}}{7}\) - step2: Simplify the root: \(2\times 16\sqrt{3}\times \frac{x^{3}}{7}\) - step3: Multiply the terms: \(32\sqrt{3}\times \frac{x^{3}}{7}\) - step4: Multiply the terms: \(\frac{32\sqrt{3}\times x^{3}}{7}\) Calculate or simplify the expression \( \sqrt(4/9) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{4}{9}}\) - step1: Use the properties of radicals: \(\frac{\sqrt{4}}{\sqrt{9}}\) - step2: Simplify the expression: \(\frac{2}{3}\) Calculate or simplify the expression \( \sqrt(1/9) * \sqrt(81/4) * \sqrt(49/36) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{1}{9}}\times \sqrt{\frac{81}{4}}\times \sqrt{\frac{49}{36}}\) - step1: Simplify the root: \(\frac{1}{3}\sqrt{\frac{81}{4}}\times \sqrt{\frac{49}{36}}\) - step2: Simplify the root: \(\frac{1}{3}\times \frac{9}{2}\sqrt{\frac{49}{36}}\) - step3: Simplify the root: \(\frac{1}{3}\times \frac{9}{2}\times \frac{7}{6}\) - step4: Multiply the terms: \(\frac{3}{2}\times \frac{7}{6}\) - step5: Reduce the numbers: \(\frac{1}{2}\times \frac{7}{2}\) - step6: Multiply the fractions: \(\frac{7}{2\times 2}\) - step7: Multiply: \(\frac{7}{4}\) Calculate or simplify the expression \( \sqrt(400/289) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{400}{289}}\) - step1: Use the properties of radicals: \(\frac{\sqrt{400}}{\sqrt{289}}\) - step2: Simplify the expression: \(\frac{20}{17}\) Calculate or simplify the expression \( \sqrt(3)(x^4/16) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{3}\times \frac{x^{4}}{16}\) - step1: Multiply the terms: \(\frac{\sqrt{3}\times x^{4}}{16}\) Calculate or simplify the expression \( \sqrt(0.25) + \sqrt(0.125) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{0.25}+\sqrt{0.125}\) - step1: Simplify the root: \(\frac{1}{2}+\sqrt{0.125}\) - step2: Simplify the root: \(\frac{1}{2}+\frac{\sqrt{2}}{4}\) - step3: Reduce fractions to a common denominator: \(\frac{2}{2\times 2}+\frac{\sqrt{2}}{4}\) - step4: Multiply the numbers: \(\frac{2}{4}+\frac{\sqrt{2}}{4}\) - step5: Transform the expression: \(\frac{2+\sqrt{2}}{4}\) Aquí están las soluciones a los problemas planteados, aplicando el concepto de raíz: 1) \( \sqrt{\frac{4}{9}} = \frac{2}{3} \) o aproximadamente \( 0.6667 \). 2) \( \sqrt{\frac{1}{9}} \cdot \sqrt{\frac{81}{4}} \cdot \sqrt{\frac{49}{36}} = \frac{7}{4} \) o \( 1.75 \). 3) \( \sqrt{0,25} + \sqrt[3]{0,125} = \frac{2 + \sqrt{2}}{4} \) o aproximadamente \( 0.8536 \). 4) \( \sqrt[4]{16} \cdot \left(\sqrt[3]{\frac{x^{3}}{7}}\right) = \frac{32\sqrt{3} \cdot x^{3}}{7} \). 5) \( \sqrt[4]{\frac{3 x^{4}}{16}} = \frac{\sqrt{3} \cdot x^{4}}{16} \). 6) \( \sqrt[1]{-0,027} = -0.027 \) o \( -\frac{27}{1000} \). 7) \( \sqrt{\frac{400}{289}} = \frac{20}{17} \) o aproximadamente \( 1.1765 \). 8) \( \sqrt{\frac{16}{81}} - 3 \sqrt{\frac{25}{9}} + \sqrt{\frac{1}{9}} = -\frac{38}{9} \) o aproximadamente \( -4.2222 \). Si necesitas más detalles sobre algún paso o concepto, no dudes en preguntar.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

1) \( \sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3} \) 2) \( \sqrt{\frac{1}{9}} \cdot \sqrt{\frac{81}{4}} \cdot \sqrt{\frac{49}{36}} = \frac{1}{3} \cdot \frac{9}{2} \cdot \frac{7}{6} = \frac{1 \cdot 9 \cdot 7}{3 \cdot 2 \cdot 6} = \frac{63}{36} = \frac{7}{4} \) 3) \( \sqrt{0,25}+\sqrt[3]{0,125} = 0,5 + 0,5 = 1 \) 4) \( \sqrt[4]{16} \cdot\left(\sqrt[3]{\frac{x^{3}}{7}}\right) = 2\cdot\frac{x}{7^{1/3}} = \frac{2x}{7^{1/3}} \) 5) \( \sqrt[4]{\frac{3 x^{4}}{16}} = \frac{\sqrt[4]{3}\cdot x}{2} \) 6) \( \sqrt[1]{-0,027} = -0,027 \) 7) \( \sqrt{\frac{400}{289}} = \frac{\sqrt{400}}{\sqrt{289}} = \frac{20}{17} \) 8) \( \sqrt{\frac{16}{81}}-3 \sqrt{\frac{25}{9}}+\sqrt{\frac{1}{9}} = \frac{4}{9} - 3 \cdot \frac{5}{3} + \frac{1}{3} = \frac{4}{9} - 5 + \frac{1}{3} = \frac{4}{9} - 5 + \frac{3}{9} = \frac{7}{9} - 5 = -\frac{38}{9} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy