Question
upstudy study bank question image url

La expresión \( \frac{(a+b)^{2}-\left(a^{2}-b^{2}\right)-2 a b-2 a^{2}}{a+b} \) es equivalente a:

Ask by Bates Norton. in Chile
Feb 17,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La expresión simplificada es \( 2(b - a) \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Extra Insights

Para simplificar la expresión \( \frac{(a+b)^{2}-\left(a^{2}-b^{2}\right)-2 a b-2 a^{2}}{a+b} \), primero desarrollamos el numerador. El cuadrado del binomio es \( (a+b)^2 = a^2 + 2ab + b^2 \). Luego, la expresión se convierte en: \[ \frac{a^2 + 2ab + b^2 - (a^2 - b^2) - 2ab - 2a^2}{a+b} \] Al simplificar, tenemos: \[ = \frac{a^2 + 2ab + b^2 - a^2 + b^2 - 2ab - 2a^2}{a+b} = \frac{-2a^2 + 2b^2}{a+b} \] Esto se puede factorizar como: \[ = \frac{2(b^2 - a^2)}{a+b} \] Utilizando la identidad de diferencia de cuadrados, \( b^2 - a^2 = (b-a)(b+a) \), resulta en: \[ = \frac{2(b-a)(b+a)}{a+b} \] Finalmente, si \( a + b \neq 0 \), podemos cancelar \( a+b \): \[ = 2(b-a) \] Por lo tanto, la expresión original es equivalente a \( 2(b-a) \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy