Repeat the same argurnent to show that \[ \lim _{x \rightarrow \infty} \frac{10^{29} x}{x^{2}+4}=0 \text { and } \lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}+15}=\infty \]
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To determine the limits, we can analyze the expressions step by step. First, consider the limit \[ \lim _{x \rightarrow \infty} \frac{10^{29} x}{x^{2}+4}. \] As \(x\) approaches infinity, the term \(x^2\) in the denominator dominates over the constant \(4\). Thus, we can simplify the expression: \[ \lim _{x \rightarrow \infty} \frac{10^{29} x}{x^{2}+4} = \lim _{x \rightarrow \infty} \frac{10^{29} x}{x^{2}} = \lim _{x \rightarrow \infty} \frac{10^{29}}{x} = 0. \] Now, analyzing the second limit \[ \lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}+15}, \] as \(x\) approaches infinity, \(x^2 + 15\) is dominated by \(x^2\), allowing us to simplify this expression as well: \[ \lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}+15} = \lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}} = \lim _{x \rightarrow \infty} x = \infty. \] In conclusion, we find that \[ \lim _{x \rightarrow \infty} \frac{10^{29} x}{x^{2}+4} = 0 \] and \[ \lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}+15} = \infty. \]