Question
upstudy study bank question image url

If \( \$ 18,000 \) is invested at \( 2.5 \% \) for 30 years, find the future value if the interest is compounded the following ways. (Round your answers to the nearest cent.) (a) annually \$ 37756.22 Very nice! (b) semiannually \$ \( \qquad \) (c) quarterly \$ \( \qquad \) (d) monthly \$ \( \qquad \) (e) daily ( \( N=360 \) ) \$ \( \qquad \) \( \times \) (f) every minute ( \( N=525,600 \) ) \$ \( \qquad \) \( \times \) (g) continuously \( \$ 37756.22 \) That's itt (h) simple (not compounded) \$ \( \qquad \)

Ask by Gough Tucker. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The future values for different compounding methods are as follows: - **Semiannually**: \$37,929.26 - **Quarterly**: \$38,017.16 - **Monthly**: \$38,076.28 - **Daily**: \$38,105.01 - **Every minute**: \$38,106.00 - **Simple Interest**: \$31,500.00

Solution

To find the future value of an investment compounded in different ways, we can use the formula for compound interest: \[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( FV \) = future value - \( P \) = principal amount (initial investment) - \( r \) = annual interest rate (as a decimal) - \( n \) = number of times interest is compounded per year - \( t \) = number of years the money is invested For the given problem: - \( P = 18000 \) - \( r = 0.025 \) - \( t = 30 \) Now, we will calculate the future value for each compounding frequency. ### (b) Semiannually For semiannual compounding, \( n = 2 \). \[ FV = 18000 \left(1 + \frac{0.025}{2}\right)^{2 \times 30} \] ### (c) Quarterly For quarterly compounding, \( n = 4 \). \[ FV = 18000 \left(1 + \frac{0.025}{4}\right)^{4 \times 30} \] ### (d) Monthly For monthly compounding, \( n = 12 \). \[ FV = 18000 \left(1 + \frac{0.025}{12}\right)^{12 \times 30} \] ### (e) Daily ( \( N=360 \) ) For daily compounding with \( N = 360 \), \( n = 360 \). \[ FV = 18000 \left(1 + \frac{0.025}{360}\right)^{360 \times 30} \] ### (f) Every minute ( \( N=525,600 \) ) For compounding every minute, \( n = 525600 \). \[ FV = 18000 \left(1 + \frac{0.025}{525600}\right)^{525600 \times 30} \] ### (h) Simple (not compounded) For simple interest, the formula is: \[ FV = P(1 + rt) \] Now, let's calculate the future values for (b), (c), (d), (e), (f), and (h). I'll perform these calculations now. Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{2}\right)^{2\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{80}\right)^{2\times 30}\) - step2: Add the numbers: \(18000\left(\frac{81}{80}\right)^{2\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{81}{80}\right)^{60}\) - step4: Simplify: \(18000\times \frac{81^{60}}{80^{60}}\) - step5: Rewrite the expression: \(80\times 225\times \frac{81^{60}}{80^{60}}\) - step6: Reduce the numbers: \(225\times \frac{81^{60}}{80^{59}}\) - step7: Rewrite the expression: \(25\times 9\times \frac{81^{60}}{80^{59}}\) - step8: Rewrite the expression: \(25\times 9\times \frac{81^{60}}{5^{59}\times 16^{59}}\) - step9: Rewrite the expression: \(5^{2}\times 9\times \frac{81^{60}}{5^{59}\times 16^{59}}\) - step10: Reduce the numbers: \(9\times \frac{81^{60}}{5^{57}\times 16^{59}}\) - step11: Multiply the fractions: \(\frac{9\times 81^{60}}{5^{57}\times 16^{59}}\) - step12: Multiply: \(\frac{9^{121}}{5^{57}\times 16^{59}}\) Calculate or simplify the expression \( 18000 * (1 + 0.025/12)^(12*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{12}\right)^{12\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{480}\right)^{12\times 30}\) - step2: Add the numbers: \(18000\left(\frac{481}{480}\right)^{12\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{481}{480}\right)^{360}\) - step4: Simplify: \(18000\times \frac{481^{360}}{480^{360}}\) - step5: Rewrite the expression: \(240\times 75\times \frac{481^{360}}{480^{360}}\) - step6: Rewrite the expression: \(240\times 75\times \frac{481^{360}}{240^{360}\times 2^{360}}\) - step7: Reduce the numbers: \(75\times \frac{481^{360}}{240^{359}\times 2^{360}}\) - step8: Rewrite the expression: \(15\times 5\times \frac{481^{360}}{240^{359}\times 2^{360}}\) - step9: Rewrite the expression: \(15\times 5\times \frac{481^{360}}{15^{359}\times 16^{359}\times 2^{360}}\) - step10: Reduce the numbers: \(5\times \frac{481^{360}}{15^{358}\times 16^{359}\times 2^{360}}\) - step11: Rewrite the expression: \(5\times \frac{481^{360}}{5^{358}\times 3^{358}\times 16^{359}\times 2^{360}}\) - step12: Reduce the numbers: \(1\times \frac{481^{360}}{5^{357}\times 3^{358}\times 16^{359}\times 2^{360}}\) - step13: Multiply the fractions: \(\frac{481^{360}}{5^{357}\times 3^{358}\times 2^{1796}}\) Calculate or simplify the expression \( 18000 * (1 + 0.025*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+0.025\times 30\right)\) - step1: Multiply the numbers: \(18000\left(1+0.75\right)\) - step2: Add the numbers: \(18000\times 1.75\) - step3: Multiply the numbers: \(31500\) Calculate or simplify the expression \( 18000 * (1 + 0.025/4)^(4*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{4}\right)^{4\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{160}\right)^{4\times 30}\) - step2: Add the numbers: \(18000\left(\frac{161}{160}\right)^{4\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{161}{160}\right)^{120}\) - step4: Simplify: \(18000\times \frac{161^{120}}{160^{120}}\) - step5: Rewrite the expression: \(80\times 225\times \frac{161^{120}}{160^{120}}\) - step6: Rewrite the expression: \(80\times 225\times \frac{161^{120}}{80^{120}\times 2^{120}}\) - step7: Reduce the numbers: \(225\times \frac{161^{120}}{80^{119}\times 2^{120}}\) - step8: Rewrite the expression: \(25\times 9\times \frac{161^{120}}{80^{119}\times 2^{120}}\) - step9: Rewrite the expression: \(25\times 9\times \frac{161^{120}}{5^{119}\times 16^{119}\times 2^{120}}\) - step10: Rewrite the expression: \(5^{2}\times 9\times \frac{161^{120}}{5^{119}\times 16^{119}\times 2^{120}}\) - step11: Reduce the numbers: \(9\times \frac{161^{120}}{5^{117}\times 16^{119}\times 2^{120}}\) - step12: Multiply the fractions: \(\frac{9\times 161^{120}}{5^{117}\times 2^{596}}\) Calculate or simplify the expression \( 18000 * (1 + 0.025/360)^(360*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{360}\right)^{360\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{14400}\right)^{360\times 30}\) - step2: Add the numbers: \(18000\left(\frac{14401}{14400}\right)^{360\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{14401}{14400}\right)^{10800}\) - step4: Simplify: \(18000\times \frac{14401^{10800}}{14400^{10800}}\) - step5: Rewrite the expression: \(3600\times 5\times \frac{14401^{10800}}{14400^{10800}}\) - step6: Rewrite the expression: \(3600\times 5\times \frac{14401^{10800}}{3600^{10800}\times 4^{10800}}\) - step7: Reduce the numbers: \(5\times \frac{14401^{10800}}{3600^{10799}\times 4^{10800}}\) - step8: Rewrite the expression: \(5\times \frac{14401^{10800}}{25^{10799}\times 144^{10799}\times 4^{10800}}\) - step9: Rewrite the expression: \(5\times \frac{14401^{10800}}{5^{21598}\times 144^{10799}\times 4^{10800}}\) - step10: Reduce the numbers: \(1\times \frac{14401^{10800}}{5^{21597}\times 144^{10799}\times 4^{10800}}\) - step11: Multiply the fractions: \(\frac{14401^{10800}}{5^{21597}\times 144^{10799}\times 4^{10800}}\) Calculate or simplify the expression \( 18000 * (1 + 0.025/525600)^(525600*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{525600}\right)^{525600\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{21024000}\right)^{525600\times 30}\) - step2: Add the numbers: \(18000\left(\frac{21024001}{21024000}\right)^{525600\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{21024001}{21024000}\right)^{15768000}\) - step4: Simplify: \(18000\times \frac{21024001^{15768000}}{21024000^{15768000}}\) - step5: Rewrite the expression: \(18000\times \frac{21024001^{15768000}}{18000^{15768000}\times 1168^{15768000}}\) - step6: Reduce the numbers: \(1\times \frac{21024001^{15768000}}{18000^{15767999}\times 1168^{15768000}}\) - step7: Multiply the fractions: \(\frac{21024001^{15768000}}{18000^{15767999}\times 1168^{15768000}}\) Now, let's summarize the future values calculated for each compounding method: ### (b) Semiannually \[ FV \approx 37929.26 \] ### (c) Quarterly \[ FV \approx 38017.16 \] ### (d) Monthly \[ FV \approx 38076.28 \] ### (e) Daily ( \( N=360 \) ) \[ FV \approx 38105.01 \] ### (f) Every minute ( \( N=525,600 \) ) \[ FV \approx 38106.00 \] ### (h) Simple (not compounded) Using the simple interest formula: \[ FV = 18000 \times (1 + 0.025 \times 30) = 18000 \times (1 + 0.75) = 18000 \times 1.75 = 31500 \] ### Final Results - (b) Semiannually: \$ 37,929.26 - (c) Quarterly: \$ 38,017.16 - (d) Monthly: \$ 38,076.28 - (e) Daily: \$ 38,105.01 - (f) Every minute: \$ 38,106.00 - (h) Simple: \$ 31,500.00 If you need any further assistance or calculations, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Alright, let’s dive into some other ways of compounding that investment and see how much it can grow! For part (b) semiannually, the future value formula is: \[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \] Using \( P = 18,000 \), \( r = 0.025 \) (which is 2.5%), \( n = 2 \), and \( t = 30 \): \[ FV = 18000 \left(1 + \frac{0.025}{2}\right)^{2 \times 30} \] \[ FV \approx 18000 \left(1 + 0.0125\right)^{60} \approx 18000 \times 2.304772 = \$ 41485.88 \] For part (c) quarterly, change \( n \) to \( 4 \): \[ FV = 18000 \left(1 + \frac{0.025}{4}\right)^{4 \times 30} \] \[ FV \approx 18000 \left(1 + 0.00625\right)^{120} \approx 18000 \times 2.472539 = \$ 44505.71 \] Keep checking back to see how those numbers climb with different compounding frequencies! Now for (d) monthly, use \( n = 12 \): \[ FV = 18000 \left(1 + \frac{0.025}{12}\right)^{12 \times 30} \] \[ FV \approx 18000 \left(1 + 0.0020833\right)^{360} \approx 18000 \times 2.455853 = \$ 44193.36 \] On to (e) with daily compounding (using \( N = 360 \)), simply let \( n = 360 \): \[ FV = 18000 \left(1 + \frac{0.025}{360}\right)^{360 \times 30} \] \[ FV \approx 18000 \left(1 + 0.00006944\right)^{10800} \approx 18000 \times 2.487961 = \$ 44782.28 \] For (f) compounding every minute (with \( N=525,600 \)), set \( n = 525600 \): \[ FV = 18000 \left(1 + \frac{0.025}{525600}\right)^{525600 \times 30} \] \[ FV \approx 18000 \left(1 + 0.00000004756\right)^{1576800000} \approx 18000 \times 2.486871 = \$ 44764.87 \] Finally, for (h) using simple interest: \[ FV = P(1 + rt) = 18000 (1 + 0.025 \times 30) = 18000 \times 1.75 = \$ 31500.00 \] And there you have it! The magic of compounding really shows how your money can grow in various ways.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy