Answer
The future values for different compounding methods are as follows:
- **Semiannually**: \$37,929.26
- **Quarterly**: \$38,017.16
- **Monthly**: \$38,076.28
- **Daily**: \$38,105.01
- **Every minute**: \$38,106.00
- **Simple Interest**: \$31,500.00
Solution
To find the future value of an investment compounded in different ways, we can use the formula for compound interest:
\[
FV = P \left(1 + \frac{r}{n}\right)^{nt}
\]
where:
- \( FV \) = future value
- \( P \) = principal amount (initial investment)
- \( r \) = annual interest rate (as a decimal)
- \( n \) = number of times interest is compounded per year
- \( t \) = number of years the money is invested
For the given problem:
- \( P = 18000 \)
- \( r = 0.025 \)
- \( t = 30 \)
Now, we will calculate the future value for each compounding frequency.
### (b) Semiannually
For semiannual compounding, \( n = 2 \).
\[
FV = 18000 \left(1 + \frac{0.025}{2}\right)^{2 \times 30}
\]
### (c) Quarterly
For quarterly compounding, \( n = 4 \).
\[
FV = 18000 \left(1 + \frac{0.025}{4}\right)^{4 \times 30}
\]
### (d) Monthly
For monthly compounding, \( n = 12 \).
\[
FV = 18000 \left(1 + \frac{0.025}{12}\right)^{12 \times 30}
\]
### (e) Daily ( \( N=360 \) )
For daily compounding with \( N = 360 \), \( n = 360 \).
\[
FV = 18000 \left(1 + \frac{0.025}{360}\right)^{360 \times 30}
\]
### (f) Every minute ( \( N=525,600 \) )
For compounding every minute, \( n = 525600 \).
\[
FV = 18000 \left(1 + \frac{0.025}{525600}\right)^{525600 \times 30}
\]
### (h) Simple (not compounded)
For simple interest, the formula is:
\[
FV = P(1 + rt)
\]
Now, let's calculate the future values for (b), (c), (d), (e), (f), and (h).
I'll perform these calculations now.
Calculate the value by following steps:
- step0: Calculate:
\(18000\left(1+\frac{0.025}{2}\right)^{2\times 30}\)
- step1: Divide the terms:
\(18000\left(1+\frac{1}{80}\right)^{2\times 30}\)
- step2: Add the numbers:
\(18000\left(\frac{81}{80}\right)^{2\times 30}\)
- step3: Multiply the numbers:
\(18000\left(\frac{81}{80}\right)^{60}\)
- step4: Simplify:
\(18000\times \frac{81^{60}}{80^{60}}\)
- step5: Rewrite the expression:
\(80\times 225\times \frac{81^{60}}{80^{60}}\)
- step6: Reduce the numbers:
\(225\times \frac{81^{60}}{80^{59}}\)
- step7: Rewrite the expression:
\(25\times 9\times \frac{81^{60}}{80^{59}}\)
- step8: Rewrite the expression:
\(25\times 9\times \frac{81^{60}}{5^{59}\times 16^{59}}\)
- step9: Rewrite the expression:
\(5^{2}\times 9\times \frac{81^{60}}{5^{59}\times 16^{59}}\)
- step10: Reduce the numbers:
\(9\times \frac{81^{60}}{5^{57}\times 16^{59}}\)
- step11: Multiply the fractions:
\(\frac{9\times 81^{60}}{5^{57}\times 16^{59}}\)
- step12: Multiply:
\(\frac{9^{121}}{5^{57}\times 16^{59}}\)
Calculate or simplify the expression \( 18000 * (1 + 0.025/12)^(12*30) \).
Calculate the value by following steps:
- step0: Calculate:
\(18000\left(1+\frac{0.025}{12}\right)^{12\times 30}\)
- step1: Divide the terms:
\(18000\left(1+\frac{1}{480}\right)^{12\times 30}\)
- step2: Add the numbers:
\(18000\left(\frac{481}{480}\right)^{12\times 30}\)
- step3: Multiply the numbers:
\(18000\left(\frac{481}{480}\right)^{360}\)
- step4: Simplify:
\(18000\times \frac{481^{360}}{480^{360}}\)
- step5: Rewrite the expression:
\(240\times 75\times \frac{481^{360}}{480^{360}}\)
- step6: Rewrite the expression:
\(240\times 75\times \frac{481^{360}}{240^{360}\times 2^{360}}\)
- step7: Reduce the numbers:
\(75\times \frac{481^{360}}{240^{359}\times 2^{360}}\)
- step8: Rewrite the expression:
\(15\times 5\times \frac{481^{360}}{240^{359}\times 2^{360}}\)
- step9: Rewrite the expression:
\(15\times 5\times \frac{481^{360}}{15^{359}\times 16^{359}\times 2^{360}}\)
- step10: Reduce the numbers:
\(5\times \frac{481^{360}}{15^{358}\times 16^{359}\times 2^{360}}\)
- step11: Rewrite the expression:
\(5\times \frac{481^{360}}{5^{358}\times 3^{358}\times 16^{359}\times 2^{360}}\)
- step12: Reduce the numbers:
\(1\times \frac{481^{360}}{5^{357}\times 3^{358}\times 16^{359}\times 2^{360}}\)
- step13: Multiply the fractions:
\(\frac{481^{360}}{5^{357}\times 3^{358}\times 2^{1796}}\)
Calculate or simplify the expression \( 18000 * (1 + 0.025*30) \).
Calculate the value by following steps:
- step0: Calculate:
\(18000\left(1+0.025\times 30\right)\)
- step1: Multiply the numbers:
\(18000\left(1+0.75\right)\)
- step2: Add the numbers:
\(18000\times 1.75\)
- step3: Multiply the numbers:
\(31500\)
Calculate or simplify the expression \( 18000 * (1 + 0.025/4)^(4*30) \).
Calculate the value by following steps:
- step0: Calculate:
\(18000\left(1+\frac{0.025}{4}\right)^{4\times 30}\)
- step1: Divide the terms:
\(18000\left(1+\frac{1}{160}\right)^{4\times 30}\)
- step2: Add the numbers:
\(18000\left(\frac{161}{160}\right)^{4\times 30}\)
- step3: Multiply the numbers:
\(18000\left(\frac{161}{160}\right)^{120}\)
- step4: Simplify:
\(18000\times \frac{161^{120}}{160^{120}}\)
- step5: Rewrite the expression:
\(80\times 225\times \frac{161^{120}}{160^{120}}\)
- step6: Rewrite the expression:
\(80\times 225\times \frac{161^{120}}{80^{120}\times 2^{120}}\)
- step7: Reduce the numbers:
\(225\times \frac{161^{120}}{80^{119}\times 2^{120}}\)
- step8: Rewrite the expression:
\(25\times 9\times \frac{161^{120}}{80^{119}\times 2^{120}}\)
- step9: Rewrite the expression:
\(25\times 9\times \frac{161^{120}}{5^{119}\times 16^{119}\times 2^{120}}\)
- step10: Rewrite the expression:
\(5^{2}\times 9\times \frac{161^{120}}{5^{119}\times 16^{119}\times 2^{120}}\)
- step11: Reduce the numbers:
\(9\times \frac{161^{120}}{5^{117}\times 16^{119}\times 2^{120}}\)
- step12: Multiply the fractions:
\(\frac{9\times 161^{120}}{5^{117}\times 2^{596}}\)
Calculate or simplify the expression \( 18000 * (1 + 0.025/360)^(360*30) \).
Calculate the value by following steps:
- step0: Calculate:
\(18000\left(1+\frac{0.025}{360}\right)^{360\times 30}\)
- step1: Divide the terms:
\(18000\left(1+\frac{1}{14400}\right)^{360\times 30}\)
- step2: Add the numbers:
\(18000\left(\frac{14401}{14400}\right)^{360\times 30}\)
- step3: Multiply the numbers:
\(18000\left(\frac{14401}{14400}\right)^{10800}\)
- step4: Simplify:
\(18000\times \frac{14401^{10800}}{14400^{10800}}\)
- step5: Rewrite the expression:
\(3600\times 5\times \frac{14401^{10800}}{14400^{10800}}\)
- step6: Rewrite the expression:
\(3600\times 5\times \frac{14401^{10800}}{3600^{10800}\times 4^{10800}}\)
- step7: Reduce the numbers:
\(5\times \frac{14401^{10800}}{3600^{10799}\times 4^{10800}}\)
- step8: Rewrite the expression:
\(5\times \frac{14401^{10800}}{25^{10799}\times 144^{10799}\times 4^{10800}}\)
- step9: Rewrite the expression:
\(5\times \frac{14401^{10800}}{5^{21598}\times 144^{10799}\times 4^{10800}}\)
- step10: Reduce the numbers:
\(1\times \frac{14401^{10800}}{5^{21597}\times 144^{10799}\times 4^{10800}}\)
- step11: Multiply the fractions:
\(\frac{14401^{10800}}{5^{21597}\times 144^{10799}\times 4^{10800}}\)
Calculate or simplify the expression \( 18000 * (1 + 0.025/525600)^(525600*30) \).
Calculate the value by following steps:
- step0: Calculate:
\(18000\left(1+\frac{0.025}{525600}\right)^{525600\times 30}\)
- step1: Divide the terms:
\(18000\left(1+\frac{1}{21024000}\right)^{525600\times 30}\)
- step2: Add the numbers:
\(18000\left(\frac{21024001}{21024000}\right)^{525600\times 30}\)
- step3: Multiply the numbers:
\(18000\left(\frac{21024001}{21024000}\right)^{15768000}\)
- step4: Simplify:
\(18000\times \frac{21024001^{15768000}}{21024000^{15768000}}\)
- step5: Rewrite the expression:
\(18000\times \frac{21024001^{15768000}}{18000^{15768000}\times 1168^{15768000}}\)
- step6: Reduce the numbers:
\(1\times \frac{21024001^{15768000}}{18000^{15767999}\times 1168^{15768000}}\)
- step7: Multiply the fractions:
\(\frac{21024001^{15768000}}{18000^{15767999}\times 1168^{15768000}}\)
Now, let's summarize the future values calculated for each compounding method:
### (b) Semiannually
\[
FV \approx 37929.26
\]
### (c) Quarterly
\[
FV \approx 38017.16
\]
### (d) Monthly
\[
FV \approx 38076.28
\]
### (e) Daily ( \( N=360 \) )
\[
FV \approx 38105.01
\]
### (f) Every minute ( \( N=525,600 \) )
\[
FV \approx 38106.00
\]
### (h) Simple (not compounded)
Using the simple interest formula:
\[
FV = 18000 \times (1 + 0.025 \times 30) = 18000 \times (1 + 0.75) = 18000 \times 1.75 = 31500
\]
### Final Results
- (b) Semiannually: \$ 37,929.26
- (c) Quarterly: \$ 38,017.16
- (d) Monthly: \$ 38,076.28
- (e) Daily: \$ 38,105.01
- (f) Every minute: \$ 38,106.00
- (h) Simple: \$ 31,500.00
If you need any further assistance or calculations, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution