Pregunta
upstudy study bank question image url

If \( \$ 18,000 \) is invested at \( 2.5 \% \) for 30 years, find the future value if the interest is compounded the following ways. (Round your answers to the nearest cent.) (a) annually \$ 37756.22 Very nice! (b) semiannually \$ \( \qquad \) (c) quarterly \$ \( \qquad \) (d) monthly \$ \( \qquad \) (e) daily ( \( N=360 \) ) \$ \( \qquad \) \( \times \) (f) every minute ( \( N=525,600 \) ) \$ \( \qquad \) \( \times \) (g) continuously \( \$ 37756.22 \) That's itt (h) simple (not compounded) \$ \( \qquad \)

Ask by Gough Tucker. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The future values for different compounding methods are as follows: - **Semiannually**: \$37,929.26 - **Quarterly**: \$38,017.16 - **Monthly**: \$38,076.28 - **Daily**: \$38,105.01 - **Every minute**: \$38,106.00 - **Simple Interest**: \$31,500.00

Solución

To find the future value of an investment compounded in different ways, we can use the formula for compound interest: \[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( FV \) = future value - \( P \) = principal amount (initial investment) - \( r \) = annual interest rate (as a decimal) - \( n \) = number of times interest is compounded per year - \( t \) = number of years the money is invested For the given problem: - \( P = 18000 \) - \( r = 0.025 \) - \( t = 30 \) Now, we will calculate the future value for each compounding frequency. ### (b) Semiannually For semiannual compounding, \( n = 2 \). \[ FV = 18000 \left(1 + \frac{0.025}{2}\right)^{2 \times 30} \] ### (c) Quarterly For quarterly compounding, \( n = 4 \). \[ FV = 18000 \left(1 + \frac{0.025}{4}\right)^{4 \times 30} \] ### (d) Monthly For monthly compounding, \( n = 12 \). \[ FV = 18000 \left(1 + \frac{0.025}{12}\right)^{12 \times 30} \] ### (e) Daily ( \( N=360 \) ) For daily compounding with \( N = 360 \), \( n = 360 \). \[ FV = 18000 \left(1 + \frac{0.025}{360}\right)^{360 \times 30} \] ### (f) Every minute ( \( N=525,600 \) ) For compounding every minute, \( n = 525600 \). \[ FV = 18000 \left(1 + \frac{0.025}{525600}\right)^{525600 \times 30} \] ### (h) Simple (not compounded) For simple interest, the formula is: \[ FV = P(1 + rt) \] Now, let's calculate the future values for (b), (c), (d), (e), (f), and (h). I'll perform these calculations now. Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{2}\right)^{2\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{80}\right)^{2\times 30}\) - step2: Add the numbers: \(18000\left(\frac{81}{80}\right)^{2\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{81}{80}\right)^{60}\) - step4: Simplify: \(18000\times \frac{81^{60}}{80^{60}}\) - step5: Rewrite the expression: \(80\times 225\times \frac{81^{60}}{80^{60}}\) - step6: Reduce the numbers: \(225\times \frac{81^{60}}{80^{59}}\) - step7: Rewrite the expression: \(25\times 9\times \frac{81^{60}}{80^{59}}\) - step8: Rewrite the expression: \(25\times 9\times \frac{81^{60}}{5^{59}\times 16^{59}}\) - step9: Rewrite the expression: \(5^{2}\times 9\times \frac{81^{60}}{5^{59}\times 16^{59}}\) - step10: Reduce the numbers: \(9\times \frac{81^{60}}{5^{57}\times 16^{59}}\) - step11: Multiply the fractions: \(\frac{9\times 81^{60}}{5^{57}\times 16^{59}}\) - step12: Multiply: \(\frac{9^{121}}{5^{57}\times 16^{59}}\) Calculate or simplify the expression \( 18000 * (1 + 0.025/12)^(12*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{12}\right)^{12\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{480}\right)^{12\times 30}\) - step2: Add the numbers: \(18000\left(\frac{481}{480}\right)^{12\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{481}{480}\right)^{360}\) - step4: Simplify: \(18000\times \frac{481^{360}}{480^{360}}\) - step5: Rewrite the expression: \(240\times 75\times \frac{481^{360}}{480^{360}}\) - step6: Rewrite the expression: \(240\times 75\times \frac{481^{360}}{240^{360}\times 2^{360}}\) - step7: Reduce the numbers: \(75\times \frac{481^{360}}{240^{359}\times 2^{360}}\) - step8: Rewrite the expression: \(15\times 5\times \frac{481^{360}}{240^{359}\times 2^{360}}\) - step9: Rewrite the expression: \(15\times 5\times \frac{481^{360}}{15^{359}\times 16^{359}\times 2^{360}}\) - step10: Reduce the numbers: \(5\times \frac{481^{360}}{15^{358}\times 16^{359}\times 2^{360}}\) - step11: Rewrite the expression: \(5\times \frac{481^{360}}{5^{358}\times 3^{358}\times 16^{359}\times 2^{360}}\) - step12: Reduce the numbers: \(1\times \frac{481^{360}}{5^{357}\times 3^{358}\times 16^{359}\times 2^{360}}\) - step13: Multiply the fractions: \(\frac{481^{360}}{5^{357}\times 3^{358}\times 2^{1796}}\) Calculate or simplify the expression \( 18000 * (1 + 0.025*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+0.025\times 30\right)\) - step1: Multiply the numbers: \(18000\left(1+0.75\right)\) - step2: Add the numbers: \(18000\times 1.75\) - step3: Multiply the numbers: \(31500\) Calculate or simplify the expression \( 18000 * (1 + 0.025/4)^(4*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{4}\right)^{4\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{160}\right)^{4\times 30}\) - step2: Add the numbers: \(18000\left(\frac{161}{160}\right)^{4\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{161}{160}\right)^{120}\) - step4: Simplify: \(18000\times \frac{161^{120}}{160^{120}}\) - step5: Rewrite the expression: \(80\times 225\times \frac{161^{120}}{160^{120}}\) - step6: Rewrite the expression: \(80\times 225\times \frac{161^{120}}{80^{120}\times 2^{120}}\) - step7: Reduce the numbers: \(225\times \frac{161^{120}}{80^{119}\times 2^{120}}\) - step8: Rewrite the expression: \(25\times 9\times \frac{161^{120}}{80^{119}\times 2^{120}}\) - step9: Rewrite the expression: \(25\times 9\times \frac{161^{120}}{5^{119}\times 16^{119}\times 2^{120}}\) - step10: Rewrite the expression: \(5^{2}\times 9\times \frac{161^{120}}{5^{119}\times 16^{119}\times 2^{120}}\) - step11: Reduce the numbers: \(9\times \frac{161^{120}}{5^{117}\times 16^{119}\times 2^{120}}\) - step12: Multiply the fractions: \(\frac{9\times 161^{120}}{5^{117}\times 2^{596}}\) Calculate or simplify the expression \( 18000 * (1 + 0.025/360)^(360*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{360}\right)^{360\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{14400}\right)^{360\times 30}\) - step2: Add the numbers: \(18000\left(\frac{14401}{14400}\right)^{360\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{14401}{14400}\right)^{10800}\) - step4: Simplify: \(18000\times \frac{14401^{10800}}{14400^{10800}}\) - step5: Rewrite the expression: \(3600\times 5\times \frac{14401^{10800}}{14400^{10800}}\) - step6: Rewrite the expression: \(3600\times 5\times \frac{14401^{10800}}{3600^{10800}\times 4^{10800}}\) - step7: Reduce the numbers: \(5\times \frac{14401^{10800}}{3600^{10799}\times 4^{10800}}\) - step8: Rewrite the expression: \(5\times \frac{14401^{10800}}{25^{10799}\times 144^{10799}\times 4^{10800}}\) - step9: Rewrite the expression: \(5\times \frac{14401^{10800}}{5^{21598}\times 144^{10799}\times 4^{10800}}\) - step10: Reduce the numbers: \(1\times \frac{14401^{10800}}{5^{21597}\times 144^{10799}\times 4^{10800}}\) - step11: Multiply the fractions: \(\frac{14401^{10800}}{5^{21597}\times 144^{10799}\times 4^{10800}}\) Calculate or simplify the expression \( 18000 * (1 + 0.025/525600)^(525600*30) \). Calculate the value by following steps: - step0: Calculate: \(18000\left(1+\frac{0.025}{525600}\right)^{525600\times 30}\) - step1: Divide the terms: \(18000\left(1+\frac{1}{21024000}\right)^{525600\times 30}\) - step2: Add the numbers: \(18000\left(\frac{21024001}{21024000}\right)^{525600\times 30}\) - step3: Multiply the numbers: \(18000\left(\frac{21024001}{21024000}\right)^{15768000}\) - step4: Simplify: \(18000\times \frac{21024001^{15768000}}{21024000^{15768000}}\) - step5: Rewrite the expression: \(18000\times \frac{21024001^{15768000}}{18000^{15768000}\times 1168^{15768000}}\) - step6: Reduce the numbers: \(1\times \frac{21024001^{15768000}}{18000^{15767999}\times 1168^{15768000}}\) - step7: Multiply the fractions: \(\frac{21024001^{15768000}}{18000^{15767999}\times 1168^{15768000}}\) Now, let's summarize the future values calculated for each compounding method: ### (b) Semiannually \[ FV \approx 37929.26 \] ### (c) Quarterly \[ FV \approx 38017.16 \] ### (d) Monthly \[ FV \approx 38076.28 \] ### (e) Daily ( \( N=360 \) ) \[ FV \approx 38105.01 \] ### (f) Every minute ( \( N=525,600 \) ) \[ FV \approx 38106.00 \] ### (h) Simple (not compounded) Using the simple interest formula: \[ FV = 18000 \times (1 + 0.025 \times 30) = 18000 \times (1 + 0.75) = 18000 \times 1.75 = 31500 \] ### Final Results - (b) Semiannually: \$ 37,929.26 - (c) Quarterly: \$ 38,017.16 - (d) Monthly: \$ 38,076.28 - (e) Daily: \$ 38,105.01 - (f) Every minute: \$ 38,106.00 - (h) Simple: \$ 31,500.00 If you need any further assistance or calculations, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Alright, let’s dive into some other ways of compounding that investment and see how much it can grow! For part (b) semiannually, the future value formula is: \[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \] Using \( P = 18,000 \), \( r = 0.025 \) (which is 2.5%), \( n = 2 \), and \( t = 30 \): \[ FV = 18000 \left(1 + \frac{0.025}{2}\right)^{2 \times 30} \] \[ FV \approx 18000 \left(1 + 0.0125\right)^{60} \approx 18000 \times 2.304772 = \$ 41485.88 \] For part (c) quarterly, change \( n \) to \( 4 \): \[ FV = 18000 \left(1 + \frac{0.025}{4}\right)^{4 \times 30} \] \[ FV \approx 18000 \left(1 + 0.00625\right)^{120} \approx 18000 \times 2.472539 = \$ 44505.71 \] Keep checking back to see how those numbers climb with different compounding frequencies! Now for (d) monthly, use \( n = 12 \): \[ FV = 18000 \left(1 + \frac{0.025}{12}\right)^{12 \times 30} \] \[ FV \approx 18000 \left(1 + 0.0020833\right)^{360} \approx 18000 \times 2.455853 = \$ 44193.36 \] On to (e) with daily compounding (using \( N = 360 \)), simply let \( n = 360 \): \[ FV = 18000 \left(1 + \frac{0.025}{360}\right)^{360 \times 30} \] \[ FV \approx 18000 \left(1 + 0.00006944\right)^{10800} \approx 18000 \times 2.487961 = \$ 44782.28 \] For (f) compounding every minute (with \( N=525,600 \)), set \( n = 525600 \): \[ FV = 18000 \left(1 + \frac{0.025}{525600}\right)^{525600 \times 30} \] \[ FV \approx 18000 \left(1 + 0.00000004756\right)^{1576800000} \approx 18000 \times 2.486871 = \$ 44764.87 \] Finally, for (h) using simple interest: \[ FV = P(1 + rt) = 18000 (1 + 0.025 \times 30) = 18000 \times 1.75 = \$ 31500.00 \] And there you have it! The magic of compounding really shows how your money can grow in various ways.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad