Responder
The combined expression is \( (10a - 6b) \sqrt{5y} \).
Solución
Simplify the expression by following steps:
- step0: Distribute \(\sqrt{5y}\):
\(\left(-5a-3b\right)\sqrt{5y}\)
- step1: Distribute \(\sqrt{5y}:\)
\(-5a\sqrt{5y}-3b\sqrt{5y}\)
Expand the expression \( (5 a+3 b) \sqrt{5 y} \)
Simplify the expression by following steps:
- step0: Distribute \(\sqrt{5y}\):
\(\left(5a+3b\right)\sqrt{5y}\)
- step1: Distribute \(\sqrt{5y}:\)
\(5a\sqrt{5y}+3b\sqrt{5y}\)
Expand the expression \( a \sqrt{125 y}-b \sqrt{45 y} \)
Simplify the expression by following steps:
- step0: Simplify:
\(a\sqrt{125y}-b\sqrt{45y}\)
- step1: Simplify the root:
\(a\times 5\sqrt{5y}-b\sqrt{45y}\)
- step2: Simplify the root:
\(a\times 5\sqrt{5y}-b\times 3\sqrt{5y}\)
- step3: Reorder the terms:
\(5a\sqrt{5y}-b\times 3\sqrt{5y}\)
- step4: Reorder the terms:
\(5a\sqrt{5y}-3b\sqrt{5y}\)
Expand the expression \( (5 a-3 b) \sqrt{5 y} \)
Simplify the expression by following steps:
- step0: Distribute \(\sqrt{5y}\):
\(\left(5a-3b\right)\sqrt{5y}\)
- step1: Distribute \(\sqrt{5y}:\)
\(5a\sqrt{5y}-3b\sqrt{5y}\)
Let's combine the given expressions step by step.
1. **First Expression:**
\[
a \sqrt{125 y} - b \sqrt{45 y}
\]
We can simplify this:
\[
\sqrt{125 y} = \sqrt{25 \cdot 5 \cdot y} = 5 \sqrt{5y}
\]
\[
\sqrt{45 y} = \sqrt{9 \cdot 5 \cdot y} = 3 \sqrt{5y}
\]
Therefore, the first expression simplifies to:
\[
5a \sqrt{5y} - 3b \sqrt{5y}
\]
2. **Second Expression:**
\[
(5a + 3b) \sqrt{5y}
\]
This expression is already in a simplified form.
3. **Third Expression:**
\[
(5a - 3b) \sqrt{5y}
\]
This expression is also in a simplified form.
4. **Fourth Expression:**
\[
(-5a - 3b) \sqrt{5y}
\]
This expression is also in a simplified form.
Now, let's combine all the simplified expressions:
- From the first expression: \( 5a \sqrt{5y} - 3b \sqrt{5y} \)
- From the second expression: \( 5a \sqrt{5y} + 3b \sqrt{5y} \)
- From the third expression: \( 5a \sqrt{5y} - 3b \sqrt{5y} \)
- From the fourth expression: \( -5a \sqrt{5y} - 3b \sqrt{5y} \)
Now, we can combine these:
\[
(5a \sqrt{5y} - 3b \sqrt{5y}) + (5a \sqrt{5y} + 3b \sqrt{5y}) + (5a \sqrt{5y} - 3b \sqrt{5y}) + (-5a \sqrt{5y} - 3b \sqrt{5y})
\]
Combining like terms:
- The \(5a \sqrt{5y}\) terms: \(5a + 5a + 5a - 5a = 10a\)
- The \(-3b \sqrt{5y}\) and \(+3b \sqrt{5y}\) terms cancel out.
- The \(-3b \sqrt{5y}\) from the first and third expressions and \(-3b \sqrt{5y}\) from the fourth expression gives us: \(-3b - 3b = -6b\)
Thus, the final combined expression is:
\[
(10a - 6b) \sqrt{5y}
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución