Hamilton Morgan
02/09/2023 · Junior High School
9 EXERCICE 05 : Soit la fonction \( f \) définie sur \( \mathbb{R} \) par: \( f(x)=x \sqrt{x^{2}+1} \) 1) Montrer que \( f \) admet une fonction réciproque \( f^{-1} \) définie sur son domaine de définition qu'on déterminera 2) a-Montrer que \( f^{-1} \) est dérivable en o et en \( \sqrt{2} \). b-Calculer \( \left(f^{-1}\right)^{\prime}(0) \) et \( \left(f^{-1}\right)^{\prime}(\sqrt{2}) \) (on remarque que: \( f(0)=0 \) et \( f(1)=\sqrt{2} \) )
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
1) \( f \) is strictly increasing on \( \mathbb{R} \) and hence bijective, so it has an inverse function \( f^{-1} \).
2) \( f^{-1} \) is differentiable at \( 0 \) and \( \sqrt{2} \) with \( \left( f^{-1} \right)'(0) = 1 \) and \( \left( f^{-1} \right)'(\sqrt{2}) = \frac{\sqrt{2}}{3} \).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit