Q:
1. \( a^{2}-2 a b+b^{2} \)
Q:
ASK YOUR TEACHER \( [ \) PRACTICE ANOTHER
\( \frac{4}{1-\sqrt{3}} \)
Simplify by rationalizing the denominator.
\( \frac{4}{2} \)
Q:
For each equation, determine whether it represents a direct variation, an inverse variation, or neither.
Find the constant of variation when one exists and write it in simplest form.
\( 8 y=5 x \).
Direct variation
Constant of variation: \( k=\square \)
Neither variation
Q:
b. Para hallar la altura de un globo, se realizaron las
mediciones indicadas en la figura. ¿Cuánto dista el
slobo del punto \( A \) ? ¿Cuánto del punto \( B \) ? ¿A que
altura está el globo?
Q:
What value of \( b>-1 \) maximizes the integral?
\( \int_{-1}^{b} x^{2}(4-x) d x \)
Q:
Al reducir la expresión CscaTanaCosa-Csc \( 2 a ~ a ~ u n a ~ s o l a ~ f u n c i o ́ n ~ t r i g o n o m e ́ t r i c a ~ s e ~ o b t i e n e: ~ \)
\( 2 \operatorname{sen}^{2} a \)
\( -\sec ^{2} a \)
\( -\cot ^{2} a \)
Q:
\( 7 x=\frac{14}{y} \)
Direct variation
Constant of variation: \( k=\square \)
Inverse variation
Constant of variation: \( k=\square \)
Neither
Q:
Simplify the following expression by rationalizing the denominator.
\( \frac{6+\sqrt{5}}{2-\sqrt{5}} \)
Q:
value of: \( \frac{\sin \theta+\cos \theta}{2 \sin \theta} \) without using a calculator.
\( 4.2 .1 \tan \left(-32^{\circ}\right) \)
\( 4.2 .2 \sin 412^{\circ} \)
Simplify the following fully and without using a calculator:
\( \frac{\sin 120^{\circ} \cdot \tan 300^{\circ}}{\cos \left(-60^{\circ}\right) \cdot \tan 225^{\circ}} \)
Prove the following identity:
\( \frac{\cos 2 x-\cos x-\sin x}{2 \sin x \cos x+\sin x}=\frac{1}{\tan x}-\frac{1}{\sin x} \)
Determine the general solution of: \( \sin (5 \theta)=\cos \left(\theta-40^{\circ}\right) \)
Q:
Eor each equation, determine whether it represents a direct variation, an inverse variation, or neither.
Find the constant of variation when one exists and write it in simplest form.
\( -3 x+\delta y=-1 \)
Constant of variation: \( k=\square \)
Dinverse variation
Constant of variation: \( k=\square \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit