Question
upstudy study bank question image url

(b) If \( \sin 10^{\circ}=m \), write the following in terms of \( m \) : \( \begin{array}{lll}\text { (1) } \sin 350^{\circ} & \text { (2) } \sin \left(-10^{\circ}\right) & \text { (3) } \cos 260^{\circ} \\ \text { (4) } \cos 10^{\circ} & \text { (5) } \tan 170^{\circ} & \\ \text { (c) If } \cos 38^{\circ}=p \text {, write the following in terms of } p \text { : } \\ \text { (1) } \cos 322^{\circ} & \text { (2) } \sin 52^{\circ} & \text { (3) } \sin 232^{\circ} \\ \text { (4) } \tan 38^{\circ} & \text { (5) } \sin 142^{\circ} & \end{array} \)

Ask by Potter Moran. in South Africa
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

- **Part (b):** 1. \( \sin 350^{\circ} = -m \) 2. \( \sin(-10^{\circ}) = -m \) 3. \( \cos 260^{\circ} = -m \) 4. \( \cos 10^{\circ} = \sqrt{1 - m^2} \) 5. \( \tan 170^{\circ} = -\frac{m}{\sqrt{1 - m^2}} \) - **Part (c):** 1. \( \cos 322^{\circ} = p \) 2. \( \sin 52^{\circ} = p \) 3. \( \sin 232^{\circ} = -p \) 4. \( \tan 38^{\circ} = \frac{\sqrt{1 - p^2}}{p} \) 5. \( \sin 142^{\circ} = \sqrt{1 - p^2} \)

Solution

To express the given trigonometric functions in terms of \( m = \sin 10^{\circ} \) and \( p = \cos 38^{\circ} \), we will use trigonometric identities and properties. ### Part (b) 1. **For \( \sin 350^{\circ} \)**: \[ \sin 350^{\circ} = \sin(360^{\circ} - 10^{\circ}) = -\sin 10^{\circ} = -m \] 2. **For \( \sin(-10^{\circ}) \)**: \[ \sin(-10^{\circ}) = -\sin 10^{\circ} = -m \] 3. **For \( \cos 260^{\circ} \)**: \[ \cos 260^{\circ} = \cos(270^{\circ} - 10^{\circ}) = -\sin 10^{\circ} = -m \] 4. **For \( \cos 10^{\circ} \)**: Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \cos 10^{\circ} = \sqrt{1 - \sin^2 10^{\circ}} = \sqrt{1 - m^2} \] 5. **For \( \tan 170^{\circ} \)**: \[ \tan 170^{\circ} = \tan(180^{\circ} - 10^{\circ}) = -\tan 10^{\circ} = -\frac{\sin 10^{\circ}}{\cos 10^{\circ}} = -\frac{m}{\sqrt{1 - m^2}} \] ### Part (c) 1. **For \( \cos 322^{\circ} \)**: \[ \cos 322^{\circ} = \cos(360^{\circ} - 38^{\circ}) = \cos 38^{\circ} = p \] 2. **For \( \sin 52^{\circ} \)**: \[ \sin 52^{\circ} = \sin(90^{\circ} - 38^{\circ}) = \cos 38^{\circ} = p \] 3. **For \( \sin 232^{\circ} \)**: \[ \sin 232^{\circ} = \sin(180^{\circ} + 52^{\circ}) = -\sin 52^{\circ} = -p \] 4. **For \( \tan 38^{\circ} \)**: \[ \tan 38^{\circ} = \frac{\sin 38^{\circ}}{\cos 38^{\circ}} = \frac{\sqrt{1 - \cos^2 38^{\circ}}}{\cos 38^{\circ}} = \frac{\sqrt{1 - p^2}}{p} \] 5. **For \( \sin 142^{\circ} \)**: \[ \sin 142^{\circ} = \sin(180^{\circ} - 38^{\circ}) = \sin 38^{\circ} = \sqrt{1 - p^2} \] ### Summary of Results - Part (b): 1. \( \sin 350^{\circ} = -m \) 2. \( \sin(-10^{\circ}) = -m \) 3. \( \cos 260^{\circ} = -m \) 4. \( \cos 10^{\circ} = \sqrt{1 - m^2} \) 5. \( \tan 170^{\circ} = -\frac{m}{\sqrt{1 - m^2}} \) - Part (c): 1. \( \cos 322^{\circ} = p \) 2. \( \sin 52^{\circ} = p \) 3. \( \sin 232^{\circ} = -p \) 4. \( \tan 38^{\circ} = \frac{\sqrt{1 - p^2}}{p} \) 5. \( \sin 142^{\circ} = \sqrt{1 - p^2} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

If \( \sin 10^{\circ} = m \), we can express the other trigonometric functions as follows: 1. \( \sin 350^{\circ} = \sin(360^{\circ} - 10^{\circ}) = \sin 10^{\circ} = m \) 2. \( \sin(-10^{\circ}) = -\sin 10^{\circ} = -m \) 3. \( \cos 260^{\circ} = \cos(270^{\circ} - 10^{\circ}) = -\sin 10^{\circ} = -m \) 4. \( \cos 10^{\circ} = \sqrt{1 - m^2} \) 5. \( \tan 170^{\circ} = -\tan(180^{\circ} - 10^{\circ}) = -\frac{\sin 10^{\circ}}{\cos 10^{\circ}} = -\frac{m}{\sqrt{1 - m^2}} \) For \( \cos 38^{\circ} = p \): 1. \( \cos 322^{\circ} = \cos(360^{\circ} - 38^{\circ}) = \cos 38^{\circ} = p \) 2. \( \sin 52^{\circ} = \sin(90^{\circ} - 38^{\circ}) = \cos 38^{\circ} = p \) 3. \( \sin 232^{\circ} = \sin(180^{\circ} + 52^{\circ}) = -\sin 52^{\circ} = -p \) 4. \( \tan 38^{\circ} = \frac{\sin 38^{\circ}}{\cos 38^{\circ}} = \frac{\sqrt{1 - p^2}}{p} \) 5. \( \sin 142^{\circ} = \sin(180^{\circ} - 38^{\circ}) = \sin 38^{\circ} = \sqrt{1 - p^2} \)

Latest Trigonometry Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy