Question
upstudy study bank question image url

2. Calculate the following without the use of a calculator: (a) \( \cos 75^{\circ} \quad \) (b) \( \sin 15^{\circ} \quad \) (c) \( \cos 165^{\circ} \) Triangle ABC is given. (a) Determine angle A in terms of B and C . (b) Hence, show that: \( \sin \mathrm{A}=\sin \mathrm{B} \cdot \cos \mathrm{C}+\cos \mathrm{B} \cdot \sin \mathrm{C} \) Show that if \( \sin \left(\theta+60^{\circ}\right)=2 \sin \theta \) then \( \tan \theta=\frac{\sqrt{3}}{3} \)

Ask by Cervantes Marshall. in South Africa
Mar 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(a) \( \cos 75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4} \) (b) \( \sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4} \) (c) \( \cos 165^\circ = -\frac{\sqrt{6} + \sqrt{2}}{4} \) (b) In triangle ABC, angle \( \mathrm{A} = 180^\circ - (\mathrm{B} + \mathrm{C}) \). Therefore, \( \sin\mathrm{A} = \sin\mathrm{B}\cos\mathrm{C} + \cos\mathrm{B}\sin\mathrm{C} \). (c) If \( \sin(\theta + 60^\circ) = 2\sin\theta \), then \( \tan\theta = \frac{\sqrt{3}}{3} \).

Solution

### (a) Calculation of Trigonometric Values without a Calculator #### (i) \( \cos 75^\circ \) Express \( 75^\circ \) as \( 45^\circ+30^\circ \). Then use the cosine sum formula: \[ \cos(75^\circ) = \cos(45^\circ+30^\circ) = \cos45^\circ\cos30^\circ - \sin45^\circ\sin30^\circ. \] Substitute the well‐known values: \[ \cos45^\circ=\frac{\sqrt{2}}{2},\quad \cos30^\circ=\frac{\sqrt{3}}{2},\quad \sin45^\circ=\frac{\sqrt{2}}{2},\quad \sin30^\circ=\frac{1}{2}. \] Thus, \[ \cos75^\circ = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4}. \] #### (ii) \( \sin 15^\circ \) Express \( 15^\circ \) as \( 45^\circ-30^\circ \) and apply the sine difference formula: \[ \sin(15^\circ) = \sin(45^\circ-30^\circ) = \sin45^\circ\cos30^\circ - \cos45^\circ\sin30^\circ. \] Substitute the values: \[ \sin15^\circ = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4}. \] #### (iii) \( \cos 165^\circ \) Write \( 165^\circ \) as \( 180^\circ-15^\circ \) to use the identity for cosine in the second quadrant: \[ \cos165^\circ = \cos(180^\circ-15^\circ) = -\cos15^\circ. \] Now find \( \cos15^\circ \) using the cosine difference formula: \[ \cos15^\circ = \cos(45^\circ-30^\circ) = \cos45^\circ\cos30^\circ + \sin45^\circ\sin30^\circ. \] Substitute the values: \[ \cos15^\circ = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6}+\sqrt{2}}{4}. \] Thus, \[ \cos165^\circ = -\frac{\sqrt{6}+\sqrt{2}}{4}. \] --- ### (b) Triangle ABC – Angle Relationships #### (i) Expressing Angle \( \mathrm{A} \) in Terms of \( \mathrm{B} \) and \( \mathrm{C} \) In any triangle, the sum of the angles is \( 180^\circ \). Therefore, \[ \mathrm{A} + \mathrm{B} + \mathrm{C} = 180^\circ. \] Solving for \( \mathrm{A} \): \[ \mathrm{A} = 180^\circ - (\mathrm{B}+\mathrm{C}). \] #### (ii) Showing \( \sin\mathrm{A}=\sin\mathrm{B}\cos\mathrm{C}+\cos\mathrm{B}\sin\mathrm{C} \) Since \( \mathrm{A} = 180^\circ - (\mathrm{B}+\mathrm{C}) \), we have: \[ \sin\mathrm{A} = \sin\big(180^\circ - (\mathrm{B}+\mathrm{C})\big). \] Using the identity \( \sin(180^\circ-x)=\sin x \) gives: \[ \sin\mathrm{A} = \sin(\mathrm{B}+\mathrm{C}). \] Apply the sine addition formula: \[ \sin(\mathrm{B}+\mathrm{C}) = \sin\mathrm{B}\cos\mathrm{C} + \cos\mathrm{B}\sin\mathrm{C}. \] Thus, \[ \sin\mathrm{A} = \sin\mathrm{B}\cos\mathrm{C}+\cos\mathrm{B}\sin\mathrm{C}. \] --- ### (c) Solving \( \sin(\theta+60^\circ)=2\sin\theta \) for \( \tan\theta \) Start with the given equation: \[ \sin(\theta+60^\circ)=2\sin\theta. \] Expand the left-hand side using the sine addition formula: \[ \sin\theta\cos60^\circ + \cos\theta\sin60^\circ = 2\sin\theta. \] Substitute the known values \( \cos60^\circ=\frac{1}{2} \) and \( \sin60^\circ=\frac{\sqrt{3}}{2} \): \[ \sin\theta\cdot\frac{1}{2} + \cos\theta\cdot\frac{\sqrt{3}}{2} = 2\sin\theta. \] Multiply the entire equation by 2 to clear the denominators: \[ \sin\theta+\sqrt{3}\cos\theta=4\sin\theta. \] Rearrange the equation: \[ \sqrt{3}\cos\theta = 4\sin\theta - \sin\theta = 3\sin\theta. \] Divide both sides by \( \cos\theta \) (assuming \( \cos\theta\ne 0 \)): \[ \sqrt{3} = 3\tan\theta. \] Solve for \( \tan\theta \): \[ \tan\theta = \frac{\sqrt{3}}{3}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find \( \cos 75^{\circ} \), we can use the cosine angle addition formula: \[ \cos(75^{\circ}) = \cos(45^{\circ} + 30^{\circ}) = \cos(45^{\circ})\cos(30^{\circ}) - \sin(45^{\circ})\sin(30^{\circ}) \] Substituting the values, we get: \[ \cos(75^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4} \] For \( \sin 15^{\circ} \), we can use the sine angle subtraction formula: \[ \sin(15^{\circ}) = \sin(45^{\circ} - 30^{\circ}) = \sin(45^{\circ})\cos(30^{\circ}) - \cos(45^{\circ})\sin(30^{\circ}) \] Plugging in the values, we find: \[ \sin(15^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4} \] For \( \cos 165^{\circ} \), this can also be obtained through the cosine identity: \[ \cos(165^{\circ}) = -\cos(15^{\circ}) = -\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right) \] In triangle ABC, angle A can be expressed as: \[ A = 180^{\circ} - B - C \] This reflects the fundamental property of triangles that the sum of angles is always 180 degrees. To show the identity \( \sin A = \sin B \cos C + \cos B \sin C \), we can use the sine of angle A: Using the sine addition formula, we observe: \[ \sin A = \sin(180^{\circ} - B - C) = \sin(B + C) = \sin B \cos C + \cos B \sin C \] For the equation \( \sin(\theta + 60^{\circ}) = 2 \sin \theta \), if we apply the sine angle addition formula, we'd have: \[ \sin \theta \cos(60^{\circ}) + \cos \theta \sin(60^{\circ}) = 2 \sin \theta \] This simplifies to: \[ \sin \theta \cdot \frac{1}{2} + \cos \theta \cdot \frac{\sqrt{3}}{2} = 2 \sin \theta \] Rearranging gives: \[ \cos \theta \cdot \frac{\sqrt{3}}{2} = \sin \theta \cdot \frac{3}{2} \] Dividing through by \( \sin \theta \cos \theta \) results in: \[ \tan \theta = \frac{\sqrt{3}}{3} \] The connections between these trigonometric identities and properties of triangles are not only foundational in mathematics but also fascinating to explore through their historical developments and geometrical interpretations!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy