2. Calculate the following without the use of a calculator: (a) \( \cos 75^{\circ} \quad \) (b) \( \sin 15^{\circ} \quad \) (c) \( \cos 165^{\circ} \) Triangle ABC is given. (a) Determine angle A in terms of B and C . (b) Hence, show that: \( \sin \mathrm{A}=\sin \mathrm{B} \cdot \cos \mathrm{C}+\cos \mathrm{B} \cdot \sin \mathrm{C} \) Show that if \( \sin \left(\theta+60^{\circ}\right)=2 \sin \theta \) then \( \tan \theta=\frac{\sqrt{3}}{3} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find \( \cos 75^{\circ} \), we can use the cosine angle addition formula: \[ \cos(75^{\circ}) = \cos(45^{\circ} + 30^{\circ}) = \cos(45^{\circ})\cos(30^{\circ}) - \sin(45^{\circ})\sin(30^{\circ}) \] Substituting the values, we get: \[ \cos(75^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4} \] For \( \sin 15^{\circ} \), we can use the sine angle subtraction formula: \[ \sin(15^{\circ}) = \sin(45^{\circ} - 30^{\circ}) = \sin(45^{\circ})\cos(30^{\circ}) - \cos(45^{\circ})\sin(30^{\circ}) \] Plugging in the values, we find: \[ \sin(15^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4} \] For \( \cos 165^{\circ} \), this can also be obtained through the cosine identity: \[ \cos(165^{\circ}) = -\cos(15^{\circ}) = -\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right) \] In triangle ABC, angle A can be expressed as: \[ A = 180^{\circ} - B - C \] This reflects the fundamental property of triangles that the sum of angles is always 180 degrees. To show the identity \( \sin A = \sin B \cos C + \cos B \sin C \), we can use the sine of angle A: Using the sine addition formula, we observe: \[ \sin A = \sin(180^{\circ} - B - C) = \sin(B + C) = \sin B \cos C + \cos B \sin C \] For the equation \( \sin(\theta + 60^{\circ}) = 2 \sin \theta \), if we apply the sine angle addition formula, we'd have: \[ \sin \theta \cos(60^{\circ}) + \cos \theta \sin(60^{\circ}) = 2 \sin \theta \] This simplifies to: \[ \sin \theta \cdot \frac{1}{2} + \cos \theta \cdot \frac{\sqrt{3}}{2} = 2 \sin \theta \] Rearranging gives: \[ \cos \theta \cdot \frac{\sqrt{3}}{2} = \sin \theta \cdot \frac{3}{2} \] Dividing through by \( \sin \theta \cos \theta \) results in: \[ \tan \theta = \frac{\sqrt{3}}{3} \] The connections between these trigonometric identities and properties of triangles are not only foundational in mathematics but also fascinating to explore through their historical developments and geometrical interpretations!
