Pregunta
upstudy study bank question image url

2. Calculate the following without the use of a calculator: (a) \( \cos 75^{\circ} \quad \) (b) \( \sin 15^{\circ} \quad \) (c) \( \cos 165^{\circ} \) Triangle ABC is given. (a) Determine angle A in terms of B and C . (b) Hence, show that: \( \sin \mathrm{A}=\sin \mathrm{B} \cdot \cos \mathrm{C}+\cos \mathrm{B} \cdot \sin \mathrm{C} \) Show that if \( \sin \left(\theta+60^{\circ}\right)=2 \sin \theta \) then \( \tan \theta=\frac{\sqrt{3}}{3} \)

Ask by Cervantes Marshall. in South Africa
Mar 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( \cos 75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4} \) (b) \( \sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4} \) (c) \( \cos 165^\circ = -\frac{\sqrt{6} + \sqrt{2}}{4} \) (b) In triangle ABC, angle \( \mathrm{A} = 180^\circ - (\mathrm{B} + \mathrm{C}) \). Therefore, \( \sin\mathrm{A} = \sin\mathrm{B}\cos\mathrm{C} + \cos\mathrm{B}\sin\mathrm{C} \). (c) If \( \sin(\theta + 60^\circ) = 2\sin\theta \), then \( \tan\theta = \frac{\sqrt{3}}{3} \).

Solución

### (a) Calculation of Trigonometric Values without a Calculator #### (i) \( \cos 75^\circ \) Express \( 75^\circ \) as \( 45^\circ+30^\circ \). Then use the cosine sum formula: \[ \cos(75^\circ) = \cos(45^\circ+30^\circ) = \cos45^\circ\cos30^\circ - \sin45^\circ\sin30^\circ. \] Substitute the well‐known values: \[ \cos45^\circ=\frac{\sqrt{2}}{2},\quad \cos30^\circ=\frac{\sqrt{3}}{2},\quad \sin45^\circ=\frac{\sqrt{2}}{2},\quad \sin30^\circ=\frac{1}{2}. \] Thus, \[ \cos75^\circ = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4}. \] #### (ii) \( \sin 15^\circ \) Express \( 15^\circ \) as \( 45^\circ-30^\circ \) and apply the sine difference formula: \[ \sin(15^\circ) = \sin(45^\circ-30^\circ) = \sin45^\circ\cos30^\circ - \cos45^\circ\sin30^\circ. \] Substitute the values: \[ \sin15^\circ = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4}. \] #### (iii) \( \cos 165^\circ \) Write \( 165^\circ \) as \( 180^\circ-15^\circ \) to use the identity for cosine in the second quadrant: \[ \cos165^\circ = \cos(180^\circ-15^\circ) = -\cos15^\circ. \] Now find \( \cos15^\circ \) using the cosine difference formula: \[ \cos15^\circ = \cos(45^\circ-30^\circ) = \cos45^\circ\cos30^\circ + \sin45^\circ\sin30^\circ. \] Substitute the values: \[ \cos15^\circ = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6}+\sqrt{2}}{4}. \] Thus, \[ \cos165^\circ = -\frac{\sqrt{6}+\sqrt{2}}{4}. \] --- ### (b) Triangle ABC – Angle Relationships #### (i) Expressing Angle \( \mathrm{A} \) in Terms of \( \mathrm{B} \) and \( \mathrm{C} \) In any triangle, the sum of the angles is \( 180^\circ \). Therefore, \[ \mathrm{A} + \mathrm{B} + \mathrm{C} = 180^\circ. \] Solving for \( \mathrm{A} \): \[ \mathrm{A} = 180^\circ - (\mathrm{B}+\mathrm{C}). \] #### (ii) Showing \( \sin\mathrm{A}=\sin\mathrm{B}\cos\mathrm{C}+\cos\mathrm{B}\sin\mathrm{C} \) Since \( \mathrm{A} = 180^\circ - (\mathrm{B}+\mathrm{C}) \), we have: \[ \sin\mathrm{A} = \sin\big(180^\circ - (\mathrm{B}+\mathrm{C})\big). \] Using the identity \( \sin(180^\circ-x)=\sin x \) gives: \[ \sin\mathrm{A} = \sin(\mathrm{B}+\mathrm{C}). \] Apply the sine addition formula: \[ \sin(\mathrm{B}+\mathrm{C}) = \sin\mathrm{B}\cos\mathrm{C} + \cos\mathrm{B}\sin\mathrm{C}. \] Thus, \[ \sin\mathrm{A} = \sin\mathrm{B}\cos\mathrm{C}+\cos\mathrm{B}\sin\mathrm{C}. \] --- ### (c) Solving \( \sin(\theta+60^\circ)=2\sin\theta \) for \( \tan\theta \) Start with the given equation: \[ \sin(\theta+60^\circ)=2\sin\theta. \] Expand the left-hand side using the sine addition formula: \[ \sin\theta\cos60^\circ + \cos\theta\sin60^\circ = 2\sin\theta. \] Substitute the known values \( \cos60^\circ=\frac{1}{2} \) and \( \sin60^\circ=\frac{\sqrt{3}}{2} \): \[ \sin\theta\cdot\frac{1}{2} + \cos\theta\cdot\frac{\sqrt{3}}{2} = 2\sin\theta. \] Multiply the entire equation by 2 to clear the denominators: \[ \sin\theta+\sqrt{3}\cos\theta=4\sin\theta. \] Rearrange the equation: \[ \sqrt{3}\cos\theta = 4\sin\theta - \sin\theta = 3\sin\theta. \] Divide both sides by \( \cos\theta \) (assuming \( \cos\theta\ne 0 \)): \[ \sqrt{3} = 3\tan\theta. \] Solve for \( \tan\theta \): \[ \tan\theta = \frac{\sqrt{3}}{3}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \( \cos 75^{\circ} \), we can use the cosine angle addition formula: \[ \cos(75^{\circ}) = \cos(45^{\circ} + 30^{\circ}) = \cos(45^{\circ})\cos(30^{\circ}) - \sin(45^{\circ})\sin(30^{\circ}) \] Substituting the values, we get: \[ \cos(75^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4} \] For \( \sin 15^{\circ} \), we can use the sine angle subtraction formula: \[ \sin(15^{\circ}) = \sin(45^{\circ} - 30^{\circ}) = \sin(45^{\circ})\cos(30^{\circ}) - \cos(45^{\circ})\sin(30^{\circ}) \] Plugging in the values, we find: \[ \sin(15^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4} \] For \( \cos 165^{\circ} \), this can also be obtained through the cosine identity: \[ \cos(165^{\circ}) = -\cos(15^{\circ}) = -\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right) \] In triangle ABC, angle A can be expressed as: \[ A = 180^{\circ} - B - C \] This reflects the fundamental property of triangles that the sum of angles is always 180 degrees. To show the identity \( \sin A = \sin B \cos C + \cos B \sin C \), we can use the sine of angle A: Using the sine addition formula, we observe: \[ \sin A = \sin(180^{\circ} - B - C) = \sin(B + C) = \sin B \cos C + \cos B \sin C \] For the equation \( \sin(\theta + 60^{\circ}) = 2 \sin \theta \), if we apply the sine angle addition formula, we'd have: \[ \sin \theta \cos(60^{\circ}) + \cos \theta \sin(60^{\circ}) = 2 \sin \theta \] This simplifies to: \[ \sin \theta \cdot \frac{1}{2} + \cos \theta \cdot \frac{\sqrt{3}}{2} = 2 \sin \theta \] Rearranging gives: \[ \cos \theta \cdot \frac{\sqrt{3}}{2} = \sin \theta \cdot \frac{3}{2} \] Dividing through by \( \sin \theta \cos \theta \) results in: \[ \tan \theta = \frac{\sqrt{3}}{3} \] The connections between these trigonometric identities and properties of triangles are not only foundational in mathematics but also fascinating to explore through their historical developments and geometrical interpretations!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad