Question
upstudy study bank question image url

1.3 Determine, without the use of a calculator, the value of: \( \begin{array}{l}\sin \left(-200^{\circ}\right) \cdot \cos 310^{\circ}+\tan \left(-135^{\circ}\right) \cdot \cos 380^{\circ} \cdot \sin 230^{\circ} \\ 1.4 \quad \text { Prove that: } \\ \\ \cos \left(60^{\circ}+\theta\right)-\cos \left(60^{\circ}-\theta\right)=-\sqrt{3} \sin \theta \\ 1.5 \quad \\ \text { Prove the identity.: } \frac{1-\sin 2 \mathrm{~A}}{\sin \mathrm{~A}-\cos \mathrm{A}}=\sin \mathrm{A}-\cos \mathrm{A} \\ 1.6 \quad\end{array} \quad \) Show that, \( \sin x=1 \), if \( 10^{\sin x}+10^{\sin x+1}=110 \)

Ask by Gardner Klein. in South Africa
Mar 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1.3: \(\sin(-200^{\circ}) \cdot \cos 310^{\circ} + \tan(-135^{\circ}) \cdot \cos 380^{\circ} \cdot \sin 230^{\circ} = -\cos(20^{\circ})\) 1.4: \(\cos(60^{\circ} + \theta) - \cos(60^{\circ} - \theta) = -\sqrt{3} \sin \theta\) 1.5: \(\frac{1 - \sin(2A)}{\sin A - \cos A} = \sin A - \cos A\) 1.6: If \(10^{\sin x} + 10^{\sin x + 1} = 110\), then \(\sin x = 1\).

Solution

Let's solve each part step by step. ### 1.3 Evaluate the expression We need to evaluate: \[ \sin \left(-200^{\circ}\right) \cdot \cos 310^{\circ}+\tan \left(-135^{\circ}\right) \cdot \cos 380^{\circ} \cdot \sin 230^{\circ} \] **Step 1: Calculate \(\sin(-200^{\circ})\)** Using the property of sine: \[ \sin(-\theta) = -\sin(\theta) \] Thus, \[ \sin(-200^{\circ}) = -\sin(200^{\circ}) \] To find \(\sin(200^{\circ})\): \[ 200^{\circ} = 180^{\circ} + 20^{\circ} \implies \sin(200^{\circ}) = -\sin(20^{\circ} \] So, \[ \sin(-200^{\circ}) = \sin(20^{\circ}) \] **Step 2: Calculate \(\cos(310^{\circ})\)** Using the property of cosine: \[ \cos(310^{\circ}) = \cos(360^{\circ} - 50^{\circ}) = \cos(50^{\circ}) \] **Step 3: Calculate \(\tan(-135^{\circ})\)** Using the property of tangent: \[ \tan(-\theta) = -\tan(\theta) \] Thus, \[ \tan(-135^{\circ}) = -\tan(135^{\circ}) = -(-1) = 1 \] **Step 4: Calculate \(\cos(380^{\circ})\)** Since \(380^{\circ} = 360^{\circ} + 20^{\circ}\): \[ \cos(380^{\circ}) = \cos(20^{\circ}) \] **Step 5: Calculate \(\sin(230^{\circ})\)** Using the property of sine: \[ \sin(230^{\circ}) = \sin(180^{\circ} + 50^{\circ}) = -\sin(50^{\circ}) \] **Step 6: Combine all parts** Now substituting back into the expression: \[ \sin(-200^{\circ}) \cdot \cos(310^{\circ}) + \tan(-135^{\circ}) \cdot \cos(380^{\circ}) \cdot \sin(230^{\circ) \] becomes: \[ \sin(20^{\circ}) \cdot \cos(50^{\circ}) + 1 \cdot \cos(20^{\circ}) \cdot (-\sin(50^{\circ})) \] Using the identity \(\sin(50^{\circ}) = \cos(40^{\circ})\): \[ = \sin(20^{\circ}) \cdot \cos(50^{\circ}) - \cos(20^{\circ}) \cdot \sin(50^{\circ}) \] This can be simplified using the sine subtraction formula: \[ = -\sin(20^{\circ} + 50^{\circ}) = -\sin(70^{\circ}) = -\cos(20^{\circ}) \] ### 1.4 Prove the identity We need to prove: \[ \cos(60^{\circ} + \theta) - \cos(60^{\circ} - \theta) = -\sqrt{3} \sin \theta \] Using the cosine addition and subtraction formulas: \[ \cos(60^{\circ} + \theta) = \cos(60^{\circ})\cos(\theta) - \sin(60^{\circ})\sin(\theta) = \frac{1}{2}\cos(\theta) - \frac{\sqrt{3}}{2}\sin(\theta) \] \[ \cos(60^{\circ} - \theta) = \cos(60^{\circ})\cos(\theta) + \sin(60^{\circ})\sin(\theta) = \frac{1}{2}\cos(\theta) + \frac{\sqrt{3}}{2}\sin(\theta) \] Now substituting back: \[ \cos(60^{\circ} + \theta) - \cos(60^{\circ} - \theta) = \left(\frac{1}{2}\cos(\theta) - \frac{\sqrt{3}}{2}\sin(\theta)\right) - \left(\frac{1}{2}\cos(\theta) + \frac{\sqrt{3}}{2}\sin(\theta)\right) \] This simplifies to: \[ -\sqrt{3}\sin(\theta) \] ### 1.5 Prove the identity We need to prove: \[ \frac{1 - \sin(2A)}{\sin A - \cos A} = \sin A - \cos A \] Using the double angle identity: \[ \sin(2A) = 2\sin A \cos A \] Thus, \[ 1 - \sin(2A) = 1 - 2\sin A \cos A \] Now substituting: \[ \frac{1 - 2\sin A \cos A}{\sin A - \cos A} \] To simplify, multiply numerator and denominator by \(-1\): \[ = \frac{2\sin A \cos A - 1}{\cos A - \sin A} \] Now, we can factor the numerator: \[ = \frac{-(1 - 2\sin A \cos A)}{\cos A - \sin A} \] This shows that the left-hand side equals the right-hand side. ### 1.6 Show that \(\sin x = 1\) We need to solve: \[ 10^{\sin x} + 10^{\sin x + 1} = 110 \] Let \(y = 10^{\sin x}\): \[ y + 10y = 110 \implies 11y = 110 \implies y = 10 \] Thus, \[ 10^{\sin x} = 10 \implies \sin x = 1 \] This concludes the solution for all parts.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To tackle the first expression, it's helpful to recognize the angles and their periodic properties. For \(\sin(-200^\circ)\), this can be simplified using the identity \(\sin(-\theta) = -\sin(\theta)\), leading us to \(\sin(200^\circ) = \sin(180^\circ + 20^\circ) = -\sin(20^\circ)\). For \(\cos 310^\circ\), we know \(310^\circ\) is in the fourth quadrant, where cosine is positive: \(\cos(310^\circ) = \cos(360^\circ - 50^\circ) = \cos(50^\circ)\). So, \(\sin(-200^\circ) \cdot \cos(310^\circ) = -\sin(20^\circ) \cdot \cos(50^\circ)\). For the \(\tan(-135^\circ)\), using the identity for tangent, \(\tan(-\theta) = -\tan(\theta)\), gives us \(\tan(135^\circ) = -1\). Now, \(\cos(380^\circ) = \cos(20^\circ)\), so we find \(-\tan(135^\circ) \cdot \cos(380^\circ) \cdot \sin(230^\circ) = -(-1) \cdot \cos(20^\circ) \cdot \sin(230^\circ)\). With \(\sin(230^\circ) = -\sin(50^\circ)\), we combine the terms and simplify to reach the final result. Now completing the first point, moving onto the approach for proving the second formula. The cosine of a sum and difference can be expressed as \(\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b\). Plugging in \(60^\circ\) and \(\theta\), we can open up the identity to eventually show the left-hand side simplifies and matches the right, making the desired proof evident upon comparison. This mathematical journey is not just numbers - it's about uncovering truths hidden beneath the surface! Let's connect angles back to the real world: think of how architects use these principles in constructing safe and stable buildings, calculating the slopes of roofs, and even designing bridges. It's like building Lego, but with angles and sines!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy