For what values of \( p \) does \( \int_{1}^{\infty} x^{-p} d x \) converge?
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To determine the values of \( p \) for which the integral \( \int_{1}^{\infty} x^{-p} \, dx \) converges, we can evaluate the integral. First, we compute the indefinite integral: \[ \int x^{-p} \, dx = \frac{x^{-p+1}}{-p+1} + C \quad \text{(for } p \neq 1\text{)} \] Now, we evaluate the improper integral: \[ \int_{1}^{\infty} x^{-p} \, dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} \, dx = \lim_{b \to \infty} \left[ \frac{x^{-p+1}}{-p+1} \right]_{1}^{b} \] Calculating the definite integral gives: \[ \lim_{b \to \infty} \left( \frac{b^{-p+1}}{-p+1} - \frac{1^{-p+1}}{-p+1} \right) \] Now we need to evaluate the limit as \( b \) approaches infinity. 1. If \( -p+1 < 0 \) (or \( p > 1 \)), then \( b^{-p+1} \to 0 \). The integral converges to \( \frac{-1}{-p+1} = \frac{1}{p-1} \). 2. If \( -p+1 = 0 \) (or \( p = 1 \)), the integral diverges as \( \ln(b) \) approaches infinity. 3. If \( -p+1 > 0 \) (or \( p < 1 \)), then \( b^{-p+1} \to \infty \). The integral diverges. In summary, the integral converges if and only if \( p > 1 \).