Question
upstudy study bank question image url

18 The perpendicular distance from the point \( A=(3,-1,0) \) and the straight line \( \vec{r}=(0,4,2)+t(-1,5,0) \) is ... \( \begin{array}{llll}\text { a) } 2.8 & \text { b) } 3.2 & \text { c) } 4.2 & \text { d) } 5.1\end{array} \)

Ask by Clark Pierce. in Egypt
Jan 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The perpendicular distance is approximately 2.8 units.

Solution

To find the perpendicular distance from the point \( A = (3, -1, 0) \) to the straight line given by the vector equation \( \vec{r} = (0, 4, 2) + t(-1, 5, 0) \), we can use the formula for the distance from a point to a line in three-dimensional space: \[ \text{Distance} = \frac{|\vec{AP} \times \vec{v}|}{|\vec{v}|} \] where: - \( \vec{AP} \) is the vector from a point on the line \( P = (0, 4, 2) \) to the point \( A \), - \( \vec{v} \) is the direction vector of the line, - \( \times \) denotes the cross product, - \( | \cdot | \) denotes the magnitude of the vector. **Step-by-Step Calculation:** 1. **Identify the Vectors:** - Point on the line: \( P = (0, 4, 2) \) - Direction vector of the line: \( \vec{v} = (-1, 5, 0) \) - Vector from \( P \) to \( A \): \[ \vec{AP} = A - P = (3 - 0, -1 - 4, 0 - 2) = (3, -5, -2) \] 2. **Compute the Cross Product \( \vec{AP} \times \vec{v} \):** \[ \vec{AP} \times \vec{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -5 & -2 \\ -1 & 5 & 0 \end{vmatrix} = ( (-5)(0) - (-2)(5) )\mathbf{i} - ( 3(0) - (-2)(-1) )\mathbf{j} + ( 3(5) - (-5)(-1) )\mathbf{k} = (0 + 10)\mathbf{i} - (0 - 2)\mathbf{j} + (15 - 5)\mathbf{k} = (10, 2, 10) \] 3. **Calculate the Magnitudes:** - Magnitude of the cross product: \[ |\vec{AP} \times \vec{v}| = \sqrt{10^2 + 2^2 + 10^2} = \sqrt{100 + 4 + 100} = \sqrt{204} \] - Magnitude of the direction vector: \[ |\vec{v}| = \sqrt{(-1)^2 + 5^2 + 0^2} = \sqrt{1 + 25} = \sqrt{26} \] 4. **Compute the Distance:** \[ \text{Distance} = \frac{\sqrt{204}}{\sqrt{26}} = \sqrt{\frac{204}{26}} = \sqrt{\frac{102}{13}} \approx \frac{14.28}{5.10} \approx 2.8 \] **Final Answer:** **a) 2.8**

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find the perpendicular distance from the point \( A=(3,-1,0) \) to the line defined by \( \vec{r}=(0,4,2)+t(-1,5,0) \), we can follow this approach: 1. **Direction Vector**: The direction vector of the line is given by \( \vec{d} = (-1, 5, 0) \). 2. **Point on the Line**: A point on the line when \( t = 0 \) is \( P_0 = (0, 4, 2) \). 3. **Vector from Point to Line**: Construct the vector from the point \( A \) to the point \( P_0 \): \[ \vec{AP_0} = P_0 - A = (0 - 3, 4 - (-1), 2 - 0) = (-3, 5, 2). \] 4. **Cross Product**: The perpendicular distance \( d \) from point \( A \) to the line can be found using the formula: \[ d = \frac{|\vec{AP_0} \times \vec{d}|}{|\vec{d}|}. \] Calculate the cross product \( \vec{AP_0} \times \vec{d} \): \[ \vec{AP_0} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 5 & 2 \\ -1 & 5 & 0 \end{vmatrix} = \hat{i}(5 \cdot 0 - 2 \cdot 5) - \hat{j}(-3 \cdot 0 - 2 \cdot -1) + \hat{k}(-3 \cdot 5 - 5 \cdot -1). \] Simplifying this determinant gives: \[ \hat{i}(0 - 10) - \hat{j}(0 + 2) + \hat{k}(-15 + 5) = -10 \hat{i} - 2 \hat{j} - 10 \hat{k}. \] 5. **Magnitude of Cross Product**: \[ |\vec{AP_0} \times \vec{d}| = \sqrt{(-10)^2 + (-2)^2 + (-10)^2} = \sqrt{100 + 4 + 100} = \sqrt{204} = 2\sqrt{51}. \] 6. **Magnitude of Direction Vector**: \[ |\vec{d}| = \sqrt{(-1)^2 + 5^2 + 0^2} = \sqrt{1 + 25} = \sqrt{26}. \] 7. **Distance Calculation**: \[ d = \frac{|\vec{AP_0} \times \vec{d}|}{|\vec{d}|} = \frac{2\sqrt{51}}{\sqrt{26}}. \] 8. **Numerical Approximation**: \[ \sqrt{51} \approx 7.14 \quad \text{and} \quad \sqrt{26} \approx 5.1 \implies d \approx \frac{2 \cdot 7.14}{5.1} \approx \frac{14.28}{5.1} \approx 2.8. \] Thus, the closest option is: The perpendicular distance is \( 2.8 \). The correct answer is \( \text{a) } 2.8 \).

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy