Pregunta
upstudy study bank question image url

18 The perpendicular distance from the point \( A=(3,-1,0) \) and the straight line \( \vec{r}=(0,4,2)+t(-1,5,0) \) is ... \( \begin{array}{llll}\text { a) } 2.8 & \text { b) } 3.2 & \text { c) } 4.2 & \text { d) } 5.1\end{array} \)

Ask by Clark Pierce. in Egypt
Jan 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The perpendicular distance is approximately 2.8 units.

Solución

To find the perpendicular distance from the point \( A = (3, -1, 0) \) to the straight line given by the vector equation \( \vec{r} = (0, 4, 2) + t(-1, 5, 0) \), we can use the formula for the distance from a point to a line in three-dimensional space: \[ \text{Distance} = \frac{|\vec{AP} \times \vec{v}|}{|\vec{v}|} \] where: - \( \vec{AP} \) is the vector from a point on the line \( P = (0, 4, 2) \) to the point \( A \), - \( \vec{v} \) is the direction vector of the line, - \( \times \) denotes the cross product, - \( | \cdot | \) denotes the magnitude of the vector. **Step-by-Step Calculation:** 1. **Identify the Vectors:** - Point on the line: \( P = (0, 4, 2) \) - Direction vector of the line: \( \vec{v} = (-1, 5, 0) \) - Vector from \( P \) to \( A \): \[ \vec{AP} = A - P = (3 - 0, -1 - 4, 0 - 2) = (3, -5, -2) \] 2. **Compute the Cross Product \( \vec{AP} \times \vec{v} \):** \[ \vec{AP} \times \vec{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -5 & -2 \\ -1 & 5 & 0 \end{vmatrix} = ( (-5)(0) - (-2)(5) )\mathbf{i} - ( 3(0) - (-2)(-1) )\mathbf{j} + ( 3(5) - (-5)(-1) )\mathbf{k} = (0 + 10)\mathbf{i} - (0 - 2)\mathbf{j} + (15 - 5)\mathbf{k} = (10, 2, 10) \] 3. **Calculate the Magnitudes:** - Magnitude of the cross product: \[ |\vec{AP} \times \vec{v}| = \sqrt{10^2 + 2^2 + 10^2} = \sqrt{100 + 4 + 100} = \sqrt{204} \] - Magnitude of the direction vector: \[ |\vec{v}| = \sqrt{(-1)^2 + 5^2 + 0^2} = \sqrt{1 + 25} = \sqrt{26} \] 4. **Compute the Distance:** \[ \text{Distance} = \frac{\sqrt{204}}{\sqrt{26}} = \sqrt{\frac{204}{26}} = \sqrt{\frac{102}{13}} \approx \frac{14.28}{5.10} \approx 2.8 \] **Final Answer:** **a) 2.8**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the perpendicular distance from the point \( A=(3,-1,0) \) to the line defined by \( \vec{r}=(0,4,2)+t(-1,5,0) \), we can follow this approach: 1. **Direction Vector**: The direction vector of the line is given by \( \vec{d} = (-1, 5, 0) \). 2. **Point on the Line**: A point on the line when \( t = 0 \) is \( P_0 = (0, 4, 2) \). 3. **Vector from Point to Line**: Construct the vector from the point \( A \) to the point \( P_0 \): \[ \vec{AP_0} = P_0 - A = (0 - 3, 4 - (-1), 2 - 0) = (-3, 5, 2). \] 4. **Cross Product**: The perpendicular distance \( d \) from point \( A \) to the line can be found using the formula: \[ d = \frac{|\vec{AP_0} \times \vec{d}|}{|\vec{d}|}. \] Calculate the cross product \( \vec{AP_0} \times \vec{d} \): \[ \vec{AP_0} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 5 & 2 \\ -1 & 5 & 0 \end{vmatrix} = \hat{i}(5 \cdot 0 - 2 \cdot 5) - \hat{j}(-3 \cdot 0 - 2 \cdot -1) + \hat{k}(-3 \cdot 5 - 5 \cdot -1). \] Simplifying this determinant gives: \[ \hat{i}(0 - 10) - \hat{j}(0 + 2) + \hat{k}(-15 + 5) = -10 \hat{i} - 2 \hat{j} - 10 \hat{k}. \] 5. **Magnitude of Cross Product**: \[ |\vec{AP_0} \times \vec{d}| = \sqrt{(-10)^2 + (-2)^2 + (-10)^2} = \sqrt{100 + 4 + 100} = \sqrt{204} = 2\sqrt{51}. \] 6. **Magnitude of Direction Vector**: \[ |\vec{d}| = \sqrt{(-1)^2 + 5^2 + 0^2} = \sqrt{1 + 25} = \sqrt{26}. \] 7. **Distance Calculation**: \[ d = \frac{|\vec{AP_0} \times \vec{d}|}{|\vec{d}|} = \frac{2\sqrt{51}}{\sqrt{26}}. \] 8. **Numerical Approximation**: \[ \sqrt{51} \approx 7.14 \quad \text{and} \quad \sqrt{26} \approx 5.1 \implies d \approx \frac{2 \cdot 7.14}{5.1} \approx \frac{14.28}{5.1} \approx 2.8. \] Thus, the closest option is: The perpendicular distance is \( 2.8 \). The correct answer is \( \text{a) } 2.8 \).

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad