Question
upstudy study bank question image url

Primitive de \( \frac{1}{\sin x} \)

Ask by Estrada Page. in Togo
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Une primitive de \( \frac{1}{\sin x} \) est \( \ln |\tan(x/2)| + C \).

Solution

Nous cherchons une primitive de 1/sin x, c'est-à-dire de la fonction csc x. Une primitive connue de csc x est :   ln |tan(x/2)| + C Pour vérifier cette formule, nous pouvons dériver ln |tan(x/2)| : 1. Soit F(x) = ln |tan(x/2)|. Sa dérivée est donnée par la règle de dérivation d'un logarithme :   F′(x) = (1/ tan(x/2)) · (tan(x/2))′. 2. Le dérivé de tan(x/2) est :   (tan(x/2))′ = (1/2) · sec²(x/2). 3. On obtient alors :   F′(x) = (1/ tan(x/2)) · (1/2) · sec²(x/2)      = (1/2) · (sec²(x/2)/tan(x/2)). 4. Exprimons maintenant tan et sec en fonctions de sin et cos :   tan(x/2) = sin(x/2) / cos(x/2) et sec²(x/2) = 1/ cos²(x/2). Ainsi :   sec²(x/2)/ tan(x/2) = (1/ cos²(x/2)) / (sin(x/2)/cos(x/2)) = 1/( sin(x/2) cos(x/2) ). 5. Nous avons alors :   F′(x) = (1/2) · [1/( sin(x/2) cos(x/2) )]. 6. Notons que l'identité trigonométrique 2 sin(x/2) cos(x/2) = sin x permet d'écrire :   1/(2 sin(x/2) cos(x/2)) = 1/sin x. Ainsi, F′(x) = 1/sin x. Par conséquent, ln |tan(x/2)| + C est bien une primitive de 1/sin x.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Did you know that the integral of \( \frac{1}{\sin x} \) leads us to a commonly known function called the cosecant? This function's integral can be expressed as \( \ln | \csc x - \cot x | + C \). It's fascinating how integrals link back to functions that appear throughout trigonometry and other areas of mathematics! If you're tackling this integral, be mindful of the domain restrictions! Since \( \sin x \) can be zero at multiples of \( \pi \), the function \( \frac{1}{\sin x} \) becomes undefined at those points. Always remember to check for discontinuities when integrating to avoid those pesky pitfalls that might sneak into your calculations!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy