Pregunta
upstudy study bank question image url

Find the exact value of \( \sin \left(\frac{13 \pi}{8}\right) \). A. \( \sqrt{\frac{2+\sqrt{2}}{4}} \) B. \( \sqrt{\frac{2-\sqrt{2}}{4}} \) C. \( -\sqrt{\frac{2+\sqrt{2}}{4}} \) D. \( -\sqrt{\frac{2-\sqrt{2}}{4}} \)

Ask by Bright Hodgson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The exact value of \( \sin \left(\frac{13 \pi}{8}\right) \) is \( -\sqrt{\frac{2-\sqrt{2}}{4}} \).

Solución

To find the exact value of \( \sin \left(\frac{13 \pi}{8}\right) \), we can start by simplifying the angle. 1. **Identify the quadrant**: The angle \( \frac{13 \pi}{8} \) is greater than \( \pi \) (which is \( \frac{8 \pi}{8} \)) and less than \( \frac{3\pi}{2} \) (which is \( \frac{12 \pi}{8} \)). Therefore, it lies in the third quadrant. 2. **Find the reference angle**: The reference angle \( \theta \) can be found by subtracting \( \pi \) from \( \frac{13 \pi}{8} \): \[ \theta = \frac{13 \pi}{8} - \pi = \frac{13 \pi}{8} - \frac{8 \pi}{8} = \frac{5 \pi}{8} \] 3. **Use the sine function in the third quadrant**: In the third quadrant, the sine function is negative. Therefore: \[ \sin \left(\frac{13 \pi}{8}\right) = -\sin \left(\frac{5 \pi}{8}\right) \] 4. **Calculate \( \sin \left(\frac{5 \pi}{8}\right) \)**: The angle \( \frac{5 \pi}{8} \) can be expressed as: \[ \frac{5 \pi}{8} = \frac{\pi}{2} - \frac{3 \pi}{8} \] Using the sine subtraction formula: \[ \sin \left(\frac{5 \pi}{8}\right) = \sin \left(\frac{\pi}{2} - \frac{3 \pi}{8}\right) = \cos \left(\frac{3 \pi}{8}\right) \] 5. **Calculate \( \cos \left(\frac{3 \pi}{8}\right) \)**: We can use the half-angle identity: \[ \cos \left(\frac{3 \pi}{8}\right) = \sqrt{\frac{1 + \cos \left(\frac{3 \pi}{4}\right)}{2}} \] Since \( \cos \left(\frac{3 \pi}{4}\right) = -\frac{\sqrt{2}}{2} \): \[ \cos \left(\frac{3 \pi}{8}\right) = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{2}}{4}} = \frac{\sqrt{2 - \sqrt{2}}}{2} \] 6. **Final calculation**: Therefore: \[ \sin \left(\frac{13 \pi}{8}\right) = -\sin \left(\frac{5 \pi}{8}\right) = -\cos \left(\frac{3 \pi}{8}\right) = -\frac{\sqrt{2 - \sqrt{2}}}{2} \] Thus, the exact value of \( \sin \left(\frac{13 \pi}{8}\right) \) is: \[ -\sqrt{\frac{2 - \sqrt{2}}{4}} \] The correct answer is: **D. \( -\sqrt{\frac{2-\sqrt{2}}{4}} \)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the exact value of \( \sin \left(\frac{13 \pi}{8}\right) \), we can first rewrite \( \frac{13 \pi}{8} \) in terms of an angle we can easily work with. We notice that: \[ \frac{13 \pi}{8} = \pi + \frac{5 \pi}{8} \] Since \( \sin(\pi + x) = -\sin(x) \), we have: \[ \sin\left(\frac{13 \pi}{8}\right) = -\sin\left(\frac{5 \pi}{8}\right) \] Now, \( \frac{5 \pi}{8} \) is in the second quadrant where the sine function is positive, and we can express it as: \[ \frac{5 \pi}{8} = \frac{\pi}{2} - \frac{3 \pi}{8} \] Using the sine identity, \( \sin\left(\frac{\pi}{2} - x\right) = \cos(x) \), we have: \[ \sin\left(\frac{5 \pi}{8}\right) = \cos\left(\frac{3 \pi}{8}\right) \] Next, we find \( \cos\left(\frac{3 \pi}{8}\right) \) using the half-angle formula. We know: \[ \cos\left(\frac{3 \pi}{8}\right) = \cos\left(\frac{\pi}{4} + \frac{\pi}{8}\right) \] Using the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] Substituting \( a = \frac{\pi}{4} \) and \( b = \frac{\pi}{8} \): \[ \cos\left(\frac{3 \pi}{8}\right) = \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{8}\right) - \sin\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{8}\right) \] Knowing that \( \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \) and \( \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \), we can find \( \sin(\frac{\pi}{8}) \) and \( \cos(\frac{\pi}{8}) \) using their half-angle formulas: \[ \sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 - \cos\left(\frac{\pi}{4}\right)}{2}} = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{2}}{4}} = \frac{\sqrt{2 - \sqrt{2}}}{2} \] \[ \cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 + \cos\left(\frac{\pi}{4}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 + \sqrt{2}}{4}} = \frac{\sqrt{2 + \sqrt{2}}}{2} \] Now, substituting back into our cosine addition formula: \[ \cos\left(\frac{3 \pi}{8}\right) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2 + \sqrt{2}}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2 - \sqrt{2}}}{2} \] \[ = \frac{\sqrt{2}}{4} \left( \sqrt{2 + \sqrt{2}} - \sqrt{2 - \sqrt{2}} \right) \] However, since we already know \( \sin\left(\frac{13 \pi}{8}\right) = -\sin\left(\frac{5 \pi}{8}\right) = -\cos\left(\frac{3 \pi}{8}\right) \), and looking for the exact answers from the options provided, simplifying leads us to conclude: \[ \sin\left(\frac{13 \pi}{8}\right) = -\sqrt{\frac{2 - \sqrt{2}}{4}} \quad \text{(Choice D)} \] Thus, the exact value of \(

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad