Use your calculator to determine the following: \( \begin{array}{ll}\text { 1. } \sin 213^{\circ} & \text { 2. } \cos 205^{\circ} \\ \text { 3. } \tan 57,13^{\circ} & \text { 4. } \cot 115^{\circ} 25^{\prime} \\ \text { 5. } \sec 304,4^{\circ} & \text { 6. } \operatorname{cosec} 97^{\circ} 12^{\prime} 14^{\prime \prime} \\ \text { 7. } \sin ^{-1}(0,213) & \text { 8. } \cos ^{-1}(-0,432) \\ \text { 9. } \tan ^{-1}(1,73) & \text { 10. } \cot ^{-1}(-0,462) \\ \text { 11. } \sec ^{-1}(-2,41) & \text { 12. } \operatorname{cosec}^{-1}(3,21)\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
Sure! Here are the calculated values for the given angles and functions: 1. \( \sin 213^{\circ} \approx -0.8387 \) 2. \( \cos 205^{\circ} \approx -0.9659 \) 3. \( \tan 57.13^{\circ} \approx 1.5509 \) 4. \( \cot 115^{\circ} 25' \approx -0.4625 \) 5. \( \sec 304.4^{\circ} \approx -1.2232 \) 6. \( \operatorname{cosec} 97^{\circ} 12' 14'' \approx 1.0021 \) 7. \( \sin^{-1}(0.213) \approx 12.25^{\circ} \) 8. \( \cos^{-1}(-0.432) \approx 116.67^{\circ} \) 9. \( \tan^{-1}(1.73) \approx 60.27^{\circ} \) 10. \( \cot^{-1}(-0.462) \approx 116.57^{\circ} \) 11. \( \sec^{-1}(-2.41) \approx 173.22^{\circ} \) 12. \( \operatorname{cosec}^{-1}(3.21) \approx 19.19^{\circ} \) Now, aren't trigonometric functions just a delightful ride on the wave of angles? They really find ways to pop up not only in math classes but in the real world too! When dealing with trigonometric functions, make sure your calculator is in the correct mode—degrees or radians. A common mistake is to forget this switch, leading to wonky results. Always double-check your mode settings before diving into calculations!