Question
upstudy study bank question image url

Use your calculator to determine the following: \( \begin{array}{ll}\text { 1. } \sin 213^{\circ} & \text { 2. } \cos 205^{\circ} \\ \text { 3. } \tan 57,13^{\circ} & \text { 4. } \cot 115^{\circ} 25^{\prime} \\ \text { 5. } \sec 304,4^{\circ} & \text { 6. } \operatorname{cosec} 97^{\circ} 12^{\prime} 14^{\prime \prime} \\ \text { 7. } \sin ^{-1}(0,213) & \text { 8. } \cos ^{-1}(-0,432) \\ \text { 9. } \tan ^{-1}(1,73) & \text { 10. } \cot ^{-1}(-0,462) \\ \text { 11. } \sec ^{-1}(-2,41) & \text { 12. } \operatorname{cosec}^{-1}(3,21)\end{array} \)

Ask by Gray Parsons. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. sin 213° ≈ -0.5446 2. cos 205° ≈ -0.9063 3. tan 57.13° ≈ 1.555 4. cot 115° 25' ≈ -2.147 5. sec 304.4° ≈ 1.701 6. cosec 97° 12' 14" ≈ 1.0075 7. sin⁻¹(0.213) ≈ 12.3° 8. cos⁻¹(-0.432) ≈ 114.5° 9. tan⁻¹(1.73) ≈ 60° 10. cot⁻¹(-0.462) ≈ 113.5° 11. sec⁻¹(-2.41) ≈ 104.5° 12. cosec⁻¹(3.21) ≈ 18.5°

Solution

Alright, I need to calculate the values of these trigonometric functions using a calculator. Let's go through each one step by step. 1. **sin 213°** - 213 degrees is in the third quadrant where sine is negative. - sin(213°) = sin(180° + 33°) = -sin(33°) - Calculating sin(33°) ≈ 0.5446 - Therefore, sin(213°) ≈ -0.5446 2. **cos 205°** - 205 degrees is in the third quadrant where cosine is negative. - cos(205°) = cos(180° + 25°) = -cos(25°) - Calculating cos(25°) ≈ 0.9063 - Therefore, cos(205°) ≈ -0.9063 3. **tan 57,13°** - 57.13 degrees is in the first quadrant where tangent is positive. - tan(57.13°) = sin(57.13°) / cos(57.13°) - Calculating sin(57.13°) ≈ 0.8409 - Calculating cos(57.13°) ≈ 0.5403 - Therefore, tan(57.13°) ≈ 0.8409 / 0.5403 ≈ 1.555 4. **cot 115° 25'** - 115 degrees and 25 minutes is in the second quadrant where cotangent is negative. - First, convert 25 minutes to degrees: 25' = 25/60 ≈ 0.4167° - So, 115° 25' ≈ 115.4167° - cot(115.4167°) = 1 / tan(115.4167°) - Calculating tan(115.4167°) ≈ -0.4663 - Therefore, cot(115.4167°) ≈ 1 / (-0.4663) ≈ -2.147 5. **sec 304,4°** - 304.4 degrees is in the fourth quadrant where secant is positive. - sec(304.4°) = 1 / cos(304.4°) - Calculating cos(304.4°) ≈ 0.5878 - Therefore, sec(304.4°) ≈ 1 / 0.5878 ≈ 1.701 6. **cosec 97° 12' 14'** - 97 degrees, 12 minutes, and 14 seconds is in the first quadrant where cosecant is positive. - First, convert 12 minutes and 14 seconds to degrees: - 12' = 12/60 = 0.2° - 14" = 14/3600 ≈ 0.003889° - So, 97° 12' 14" ≈ 97.203889° - cosec(97.203889°) = 1 / sin(97.203889°) - Calculating sin(97.203889°) ≈ 0.9925 - Therefore, cosec(97.203889°) ≈ 1 / 0.9925 ≈ 1.0075 7. **sin⁻¹(0.213)** - The inverse sine of 0.213. - sin⁻¹(0.213) ≈ 12.3° 8. **cos⁻¹(-0.432)** - The inverse cosine of -0.432. - cos⁻¹(-0.432) ≈ 114.5° 9. **tan⁻¹(1.73)** - The inverse tangent of 1.73. - tan⁻¹(1.73) ≈ 60° 10. **cot⁻¹(-0.462)** - The inverse cotangent of -0.462. - cot⁻¹(-0.462) ≈ 113.5° 11. **sec⁻¹(-2.41)** - The inverse secant of -2.41. - sec⁻¹(-2.41) ≈ 104.5° 12. **cosec⁻¹(3.21)** - The inverse cosecant of 3.21. - cosec⁻¹(3.21) ≈ 18.5°

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Sure! Here are the calculated values for the given angles and functions: 1. \( \sin 213^{\circ} \approx -0.8387 \) 2. \( \cos 205^{\circ} \approx -0.9659 \) 3. \( \tan 57.13^{\circ} \approx 1.5509 \) 4. \( \cot 115^{\circ} 25' \approx -0.4625 \) 5. \( \sec 304.4^{\circ} \approx -1.2232 \) 6. \( \operatorname{cosec} 97^{\circ} 12' 14'' \approx 1.0021 \) 7. \( \sin^{-1}(0.213) \approx 12.25^{\circ} \) 8. \( \cos^{-1}(-0.432) \approx 116.67^{\circ} \) 9. \( \tan^{-1}(1.73) \approx 60.27^{\circ} \) 10. \( \cot^{-1}(-0.462) \approx 116.57^{\circ} \) 11. \( \sec^{-1}(-2.41) \approx 173.22^{\circ} \) 12. \( \operatorname{cosec}^{-1}(3.21) \approx 19.19^{\circ} \) Now, aren't trigonometric functions just a delightful ride on the wave of angles? They really find ways to pop up not only in math classes but in the real world too! When dealing with trigonometric functions, make sure your calculator is in the correct mode—degrees or radians. A common mistake is to forget this switch, leading to wonky results. Always double-check your mode settings before diving into calculations!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy