Pregunta
upstudy study bank question image url

Use your calculator to determine the following: \( \begin{array}{ll}\text { 1. } \sin 213^{\circ} & \text { 2. } \cos 205^{\circ} \\ \text { 3. } \tan 57,13^{\circ} & \text { 4. } \cot 115^{\circ} 25^{\prime} \\ \text { 5. } \sec 304,4^{\circ} & \text { 6. } \operatorname{cosec} 97^{\circ} 12^{\prime} 14^{\prime \prime} \\ \text { 7. } \sin ^{-1}(0,213) & \text { 8. } \cos ^{-1}(-0,432) \\ \text { 9. } \tan ^{-1}(1,73) & \text { 10. } \cot ^{-1}(-0,462) \\ \text { 11. } \sec ^{-1}(-2,41) & \text { 12. } \operatorname{cosec}^{-1}(3,21)\end{array} \)

Ask by Gray Parsons. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. sin 213° ≈ -0.5446 2. cos 205° ≈ -0.9063 3. tan 57.13° ≈ 1.555 4. cot 115° 25' ≈ -2.147 5. sec 304.4° ≈ 1.701 6. cosec 97° 12' 14" ≈ 1.0075 7. sin⁻¹(0.213) ≈ 12.3° 8. cos⁻¹(-0.432) ≈ 114.5° 9. tan⁻¹(1.73) ≈ 60° 10. cot⁻¹(-0.462) ≈ 113.5° 11. sec⁻¹(-2.41) ≈ 104.5° 12. cosec⁻¹(3.21) ≈ 18.5°

Solución

Alright, I need to calculate the values of these trigonometric functions using a calculator. Let's go through each one step by step. 1. **sin 213°** - 213 degrees is in the third quadrant where sine is negative. - sin(213°) = sin(180° + 33°) = -sin(33°) - Calculating sin(33°) ≈ 0.5446 - Therefore, sin(213°) ≈ -0.5446 2. **cos 205°** - 205 degrees is in the third quadrant where cosine is negative. - cos(205°) = cos(180° + 25°) = -cos(25°) - Calculating cos(25°) ≈ 0.9063 - Therefore, cos(205°) ≈ -0.9063 3. **tan 57,13°** - 57.13 degrees is in the first quadrant where tangent is positive. - tan(57.13°) = sin(57.13°) / cos(57.13°) - Calculating sin(57.13°) ≈ 0.8409 - Calculating cos(57.13°) ≈ 0.5403 - Therefore, tan(57.13°) ≈ 0.8409 / 0.5403 ≈ 1.555 4. **cot 115° 25'** - 115 degrees and 25 minutes is in the second quadrant where cotangent is negative. - First, convert 25 minutes to degrees: 25' = 25/60 ≈ 0.4167° - So, 115° 25' ≈ 115.4167° - cot(115.4167°) = 1 / tan(115.4167°) - Calculating tan(115.4167°) ≈ -0.4663 - Therefore, cot(115.4167°) ≈ 1 / (-0.4663) ≈ -2.147 5. **sec 304,4°** - 304.4 degrees is in the fourth quadrant where secant is positive. - sec(304.4°) = 1 / cos(304.4°) - Calculating cos(304.4°) ≈ 0.5878 - Therefore, sec(304.4°) ≈ 1 / 0.5878 ≈ 1.701 6. **cosec 97° 12' 14'** - 97 degrees, 12 minutes, and 14 seconds is in the first quadrant where cosecant is positive. - First, convert 12 minutes and 14 seconds to degrees: - 12' = 12/60 = 0.2° - 14" = 14/3600 ≈ 0.003889° - So, 97° 12' 14" ≈ 97.203889° - cosec(97.203889°) = 1 / sin(97.203889°) - Calculating sin(97.203889°) ≈ 0.9925 - Therefore, cosec(97.203889°) ≈ 1 / 0.9925 ≈ 1.0075 7. **sin⁻¹(0.213)** - The inverse sine of 0.213. - sin⁻¹(0.213) ≈ 12.3° 8. **cos⁻¹(-0.432)** - The inverse cosine of -0.432. - cos⁻¹(-0.432) ≈ 114.5° 9. **tan⁻¹(1.73)** - The inverse tangent of 1.73. - tan⁻¹(1.73) ≈ 60° 10. **cot⁻¹(-0.462)** - The inverse cotangent of -0.462. - cot⁻¹(-0.462) ≈ 113.5° 11. **sec⁻¹(-2.41)** - The inverse secant of -2.41. - sec⁻¹(-2.41) ≈ 104.5° 12. **cosec⁻¹(3.21)** - The inverse cosecant of 3.21. - cosec⁻¹(3.21) ≈ 18.5°

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Sure! Here are the calculated values for the given angles and functions: 1. \( \sin 213^{\circ} \approx -0.8387 \) 2. \( \cos 205^{\circ} \approx -0.9659 \) 3. \( \tan 57.13^{\circ} \approx 1.5509 \) 4. \( \cot 115^{\circ} 25' \approx -0.4625 \) 5. \( \sec 304.4^{\circ} \approx -1.2232 \) 6. \( \operatorname{cosec} 97^{\circ} 12' 14'' \approx 1.0021 \) 7. \( \sin^{-1}(0.213) \approx 12.25^{\circ} \) 8. \( \cos^{-1}(-0.432) \approx 116.67^{\circ} \) 9. \( \tan^{-1}(1.73) \approx 60.27^{\circ} \) 10. \( \cot^{-1}(-0.462) \approx 116.57^{\circ} \) 11. \( \sec^{-1}(-2.41) \approx 173.22^{\circ} \) 12. \( \operatorname{cosec}^{-1}(3.21) \approx 19.19^{\circ} \) Now, aren't trigonometric functions just a delightful ride on the wave of angles? They really find ways to pop up not only in math classes but in the real world too! When dealing with trigonometric functions, make sure your calculator is in the correct mode—degrees or radians. A common mistake is to forget this switch, leading to wonky results. Always double-check your mode settings before diving into calculations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad