Use integration by parts to evaluate the following integral. \[ \int_{-\infty}^{-1} \theta e^{\theta} d \theta \] Use the integration by parts formula to rewrite the given integral. Because the given integral is improper, rewrite it using a limit. A. \( \lim _{a \rightarrow-\infty}-\frac{1}{e}-a e^{a}-\int_{a}^{-1} e^{\theta} d \theta \) B. \( \lim _{a \rightarrow \infty}-\frac{1}{e}-a e^{a}-\int_{-\infty}^{a} e^{\theta} d \theta \) C. \( \lim _{a \rightarrow \infty}-\frac{1}{e}-a e^{a}-\int_{a}^{-1} e^{\theta} d \theta \) D. \( \lim _{a \rightarrow-\infty}-\frac{1}{e}-a e^{a}-\int_{a}^{\infty} e^{\theta} d \theta \) Select the correct choice and, if necessary, fill in the answer box to complete your choice. A. The improper integral converges and \( \int_{-\infty}^{-1} \theta e^{\theta} d \theta=\square \). (Type an exact answer.) B. The improper integral diverges.
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To evaluate the integral \( \int_{-\infty}^{-1} \theta e^{\theta} d \theta \) using integration by parts, we need to apply the formula: \[ \int u \, dv = uv - \int v \, du \] Choosing \( u = \theta \) and \( dv = e^{\theta} d\theta \), we have \( du = d\theta \) and \( v = e^{\theta} \). Thus, \[ \int \theta e^{\theta} d\theta = \theta e^{\theta} - \int e^{\theta} d\theta = \theta e^{\theta} - e^{\theta} + C \] Now, we must address the improper integral when evaluating the bounds from \(-\infty\) to \(-1\): \[ \int_{-\infty}^{-1} \theta e^{\theta} d \theta = \lim_{a \to -\infty} \left[ \theta e^{\theta} \bigg|_a^{-1} - \int_a^{-1} e^{\theta} d\theta \right] \] Considering the evaluation limits: At \(-1\): \[ -1 e^{-1} = -\frac{1}{e} \] At \(a\) as \(a \to -\infty\): \[ ae^{a} \to 0 \text{ (since exponential decay dominates)} \] Thus, we have: \[ = -\frac{1}{e} - \left(\lim_{a \to -\infty} ae^{a} - \int_{a}^{-1} e^{\theta} d\theta\right) \] The correct choice from the options, acknowledging the limits and the setup, is: **A.** The improper integral converges and \( \int_{-\infty}^{-1} \theta e^{\theta} d \theta = -\frac{1}{e} \).