Question

\( \int _{}^{}\frac{\cos (2x)}{1+\cos (x)+\sin (x)} d x \)

Ask by Ball Christensen. in Turkey
Jan 28,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

التكامل النهائي هو: \[ 1 + \sin(x) + \cos(x) - \ln|1 + \sin(x) + \cos(x)| + C \] حيث \( C \) هو ثابت التكامل.

Solution

لحساب التكامل: \[ \int \frac{\cos(2x)}{1 + \cos(x) + \sin(x)} \, dx \] نتبع الخطوات التالية: 1. **التعويض**: نحدد \( u = 1 + \sin(x) + \cos(x) \). 2. **إيجاد المشتقة**: نحسب المشتقة بالنسبة لـ \( x \): \[ \frac{du}{dx} = \cos(x) - \sin(x) \] 3. **إعادة كتابة البسط**: نعلم أن: \[ \cos(2x) = \cos^2(x) - \sin^2(x) = (\cos(x) + \sin(x))(\cos(x) - \sin(x)) \] بذلك يصبح البسط: \[ \cos(2x) = (\cos(x) + \sin(x)) \cdot \frac{du}{dx} \] 4. **استبدال المتغيرات**: يصبح التكامل: \[ \int \frac{(\cos(x) + \sin(x)) \cdot \frac{du}{dx}}{u} \, dx = \int \frac{u - 1}{u} \, du = \int 1 \, du - \int \frac{1}{u} \, du \] 5. **حساب التكامل**: نحصل على: \[ u - \ln|u| + C \] حيث \( C \) هو ثابت التكامل. 6. **إرجاع المتغير الأصلي**: نعود للمتغير \( x \): \[ 1 + \sin(x) + \cos(x) - \ln|1 + \sin(x) + \cos(x)| + C \] **النتيجة النهائية للتكامل هي**: \[ \int \frac{\cos(2x)}{1 + \cos(x) + \sin(x)} \, dx = 1 + \sin(x) + \cos(x) - \ln|1 + \sin(x) + \cos(x)| + C \] حيث \( C \) هو ثابت التكامل.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the integral \( \int \frac{\cos(2x)}{1 + \cos(x) + \sin(x)} \, dx \), we can start by rewriting the numerator using the double angle identity: \( \cos(2x) = 2\cos^2(x) - 1 \). Next, the denominator \( 1 + \cos(x) + \sin(x) \) can be handled by transforming it into a more manageable form. Note that \( \cos(x) + \sin(x) = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \), and through some algebraic manipulation, we can find a better form to evaluate the integral. This integral can be quite complex, so a strategic substitution and further trigonometric identities will likely be necessary to find a solution. Overall, depending on the approach taken, the integral may lead to an expression that combines fundamentals of trigonometric integration and possibly partial fractions. Make sure to carefully consider the substitution to simplify the integral for easier evaluation.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy