Question
upstudy study bank question image url

Yolanda deposited \( \$ 4000 \) into an account with \( 3.6 \% \) interest, compounded monthly. Assuming that no withdrawals are made, how much will she have in the account after 8 years? Do not round any intermediate computations, and round your answer to the nearest cent.

Ask by Huang John. in the United States
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

After 8 years, Yolanda will have approximately \$5,332.73 in her account.

Solution

To calculate the amount in the account after 8 years with monthly compounding interest, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. Given: - \( P = 4000 \) - \( r = 3.6\% = 0.036 \) - \( n = 12 \) (since the interest is compounded monthly) - \( t = 8 \) Now, we can substitute these values into the formula: \[ A = 4000 \left(1 + \frac{0.036}{12}\right)^{12 \times 8} \] Let's calculate the expression step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{0.036}{12} \] 2. Calculate \( nt \): \[ 12 \times 8 \] 3. Substitute these values back into the formula and calculate \( A \). Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(12\times 8\) - step1: Multiply the numbers: \(96\) Calculate or simplify the expression \( 0.036/12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.036}{12}\) - step1: Convert the expressions: \(\frac{\frac{9}{250}}{12}\) - step2: Multiply by the reciprocal: \(\frac{9}{250}\times \frac{1}{12}\) - step3: Reduce the numbers: \(\frac{3}{250}\times \frac{1}{4}\) - step4: Multiply the fractions: \(\frac{3}{250\times 4}\) - step5: Multiply: \(\frac{3}{1000}\) Calculate or simplify the expression \( 4000*(1+0.003)^96 \). Calculate the value by following steps: - step0: Calculate: \(4000\left(1+0.003\right)^{96}\) - step1: Add the numbers: \(4000\times 1.003^{96}\) - step2: Convert the expressions: \(4000\left(\frac{1003}{1000}\right)^{96}\) - step3: Simplify: \(4000\times \frac{1003^{96}}{1000^{96}}\) - step4: Rewrite the expression: \(1000\times 4\times \frac{1003^{96}}{1000^{96}}\) - step5: Reduce the numbers: \(4\times \frac{1003^{96}}{1000^{95}}\) - step6: Rewrite the expression: \(4\times \frac{1003^{96}}{8^{95}\times 125^{95}}\) - step7: Rewrite the expression: \(2^{2}\times \frac{1003^{96}}{2^{285}\times 125^{95}}\) - step8: Reduce the numbers: \(1\times \frac{1003^{96}}{2^{283}\times 125^{95}}\) - step9: Multiply the fractions: \(\frac{1003^{96}}{2^{283}\times 125^{95}}\) Now that we have the necessary calculations: 1. The monthly interest rate \( \frac{r}{n} = 0.003 \). 2. The total number of compounding periods \( nt = 96 \). We can substitute these values into the compound interest formula: \[ A = 4000 \left(1 + 0.003\right)^{96} \] Calculating this gives us: \[ A \approx 4000 \times (1.003)^{96} \approx 5332.73 \] Finally, rounding to the nearest cent, Yolanda will have approximately: \[ \boxed{5332.73} \] in her account after 8 years.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To calculate the amount Yolanda will have in the account after 8 years with monthly compounding interest, you can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. In this case: - \( P = 4000 \) - \( r = 0.036 \) (which is \( 3.6\% \)). - \( n = 12 \) (compounded monthly). - \( t = 8 \) Now, plug in the values: \[ A = 4000 \left(1 + \frac{0.036}{12}\right)^{12 \times 8} \] \[ A = 4000 \left(1 + 0.003 \right)^{96} \] \[ A = 4000 \left(1.003 \right)^{96} \] Calculating \( (1.003)^{96} \): \[ (1.003)^{96} \approx 1.348850528 \] Now, calculate \( A \): \[ A = 4000 \times 1.348850528 \approx 5394.82 \] Thus, rounding to the nearest cent, Yolanda will have approximately **\$5394.82** in her account after 8 years.

Related Questions

Latest Arithmetic Questions

2) Dadas las siguientes ternas de fracciones, ordenarlas de modo decreciente utilizando fracciones equivalentes: \( \begin{array}{l}\text { a) }-\frac{9}{4} ;-\frac{11}{5} ;-\frac{5}{2} \\ \text { 3) Dadas las siguientes ternas de fracciones, ordenarlas de modo creciente utilizando } \\ \text { fracciones equivalentes: } \\ \begin{array}{l}\text { a) }+\frac{4}{15} ;+\frac{1}{4} ;+\frac{5}{12} \\ \text { 4) Calcular el número mixto equivalente a cada una de las siguientes fracciones y luego } \\ \text { establecer cuál es el número entero más cercano de cada una: } \\ +\frac{104}{27} ;-\frac{26}{11} ;-\frac{44}{15} ;+\frac{65}{24} \\ \text { 5) Una tormenta de granizo causó daños en dos chacras de cultivo de duraznos. En La } \\ \text { Emilia afectó } 15 / 32 \text { de la producción y en La Larga } 14 / 25 \cdot \text { ¿A cuál le causó mayor } \\ \text { daño? } \\ \text { 6) Una empresa está construyendo dos edificios. En la torre Las Flores falta completar } \\ 7 / 30 \text { y en el Edificio Esplendor } 6 / 25 \cdot ~ ¿ C u a ́ l ~ e s t a ́ ~ m a ́ s ~ c e r c a ~ d e ~ s e r ~ t e r m i n a d o ? ~\end{array} \\ \text { 7) Un depósito de nafta contiene } 13 / 40 \text { de su capacidad y otro de gasoil contiene } 11 / 36 \\ \text { de la suya. Los dos depósitos tienen la misma capacidad. ¿Cuál tiene más } \\ \text { combustible? } \\ \text { 8) Dos hoteles están vendiendo la temporada de verano. Torreón del Plata ha vendido } \\ \text { 9/14 de sus plazas; Miramar vendió } 3 / 5 \text { de sus plazas. ¿Cuál está más cerca de la } \\ \text { ocupación plena? }\end{array} \)
Arithmetic Argentina Feb 21, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy