Question
upstudy study bank question image url

3. Transformar la siguiente ecuación paramétrica a la forma rectangular. \( C(x ; y)\left\{\begin{array}{c}\boldsymbol{x}=\frac{2 t+2}{\boldsymbol{t}-1} \\ \boldsymbol{y}=\frac{\sqrt{2 t^{2}-4 t-6}}{t-1}\end{array}\right. \)

Ask by Henry Barnett. in Ecuador
Feb 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La ecuación rectangular es \( y = \frac{(x - 2)\sqrt{-8x^2 + 48x - 16}}{4} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Mind Expander

Para transformar la ecuación paramétrica a la forma rectangular, primero vamos a despejar \( t \) en términos de \( x \) y luego sustituirlo en la ecuación de \( y \). De la ecuación de \( x \): \[ x(t - 1) = 2t + 2 \implies xt - x = 2t + 2 \implies xt - 2t = x + 2 \] \[ t(x - 2) = x + 2 \implies t = \frac{x + 2}{x - 2} \] Ahora, sustituimos \( t \) en la ecuación de \( y \): \[ y = \frac{\sqrt{2 \left(\frac{x + 2}{x - 2}\right)^2 - 4\left(\frac{x + 2}{x - 2}\right) - 6}}{\frac{x + 2}{x - 2}-1} \] Simplificando, se puede llegar a una forma más sencilla que relaciona \( x \) y \( y \) sin el parámetro, logrando la forma rectangular.

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy