Question
upstudy study bank question image url

(b) If \( 5 \cos \alpha+4=0 \) with \( \alpha \in\left[0^{\circ}: 180^{\circ}\right] \) and \( 13 \sin \beta+12=0 \) with \( \tan \beta>0 \), determine the value of the following without the use of a calculator and with the aid of a diagram: \( \begin{array}{lll}\text { (1) } \sin (\alpha-\beta) & \text { (2) } \cos (\alpha+\beta) \\ \text { (4) } \tan 2 \alpha & & \text { (3) } \cos 2 \alpha\end{array} \)

Ask by Jimenez Long. in South Africa
Mar 12,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \sin (\alpha-\beta) = -\frac{63}{65}, \quad \cos (\alpha+\beta) = \frac{56}{65}, \quad \cos 2\alpha = \frac{7}{25}, \quad \tan 2\alpha = -\frac{24}{7} \]

Solution

Given the equations \[ 5\cos \alpha + 4 = 0 \quad \text{and} \quad 13\sin \beta + 12 = 0, \] we first solve for \(\cos \alpha\) and \(\sin \beta\): \[ \cos \alpha = -\frac{4}{5}, \quad \sin \beta = -\frac{12}{13}. \] Since \(\alpha \in [0^\circ, 180^\circ]\) and \(\cos \alpha < 0\), it follows that \(\alpha\) is in the second quadrant, where \(\sin \alpha\) is positive. Using the Pythagorean identity: \[ \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(-\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}, \] \[ \sin \alpha = \frac{3}{5}. \] For \(\beta\), the condition \(\tan \beta > 0\) tells us that sine and cosine have the same sign. Since \(\sin \beta\) is negative, \(\beta\) must lie in the third quadrant. Then: \[ \cos^2 \beta = 1 - \sin^2 \beta = 1 - \left(-\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169}, \] \[ \cos \beta = -\frac{5}{13}. \] Now we proceed to compute each expression: --- 1. **Calculate \(\sin (\alpha-\beta)\):** Using the angle difference formula: \[ \sin (\alpha-\beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta, \] substitute the known values: \[ \sin (\alpha-\beta) = \frac{3}{5}\left(-\frac{5}{13}\right) - \left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right). \] Simplify the products: \[ \frac{3}{5}\left(-\frac{5}{13}\right) = -\frac{15}{65}, \] \[ \left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right) = \frac{48}{65}. \] Thus, \[ \sin (\alpha-\beta) = -\frac{15}{65} - \frac{48}{65} = -\frac{63}{65}. \] --- 2. **Calculate \(\cos (\alpha+\beta)\):** Using the angle sum formula: \[ \cos (\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta, \] substitute in the values: \[ \cos (\alpha+\beta) = \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) - \frac{3}{5}\left(-\frac{12}{13}\right). \] Simplify: \[ \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) = \frac{20}{65}, \] \[ \frac{3}{5}\left(-\frac{12}{13}\right) = -\frac{36}{65}. \] Thus, \[ \cos (\alpha+\beta) = \frac{20}{65} + \frac{36}{65} = \frac{56}{65}. \] --- 3. **Calculate \(\cos 2\alpha\):** Using the double-angle formula: \[ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha, \] substitute \(\cos^2 \alpha = \frac{16}{25}\) and \(\sin^2 \alpha = \frac{9}{25}\): \[ \cos 2\alpha = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}. \] --- 4. **Calculate \(\tan 2\alpha\):** First, find \(\tan \alpha\): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4}. \] Then use the tangent double-angle formula: \[ \tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}. \] Substitute \(\tan \alpha = -\frac{3}{4}\): \[ \tan 2\alpha = \frac{2\left(-\frac{3}{4}\right)}{1-\left(-\frac{3}{4}\right)^2} = \frac{-\frac{3}{2}}{1-\frac{9}{16}}. \] Simplify the denominator: \[ 1-\frac{9}{16} = \frac{16}{16}-\frac{9}{16} = \frac{7}{16}. \] Thus, \[ \tan 2\alpha = -\frac{3}{2} \cdot \frac{16}{7} = -\frac{48}{14} = -\frac{24}{7}. \] --- Final answers: \[ \sin (\alpha-\beta) = -\frac{63}{65}, \] \[ \cos (\alpha+\beta) = \frac{56}{65}, \] \[ \cos 2\alpha = \frac{7}{25}, \] \[ \tan 2\alpha = -\frac{24}{7}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the given equations and derive the requested values, let’s start by determining \(\alpha\) and \(\beta\) from their respective equations. 1. Rearranging the first equation: \[ 5 \cos \alpha + 4 = 0 \implies \cos \alpha = -\frac{4}{5} \] Since \(\cos \alpha\) is negative and \(\alpha\) is in the range \([0^\circ, 180^\circ]\), \(\alpha\) must be in the second quadrant. Thus: \[ \alpha = 180^\circ - \cos^{-1}\left(\frac{4}{5}\right) \] 2. For \(\beta\), rearranging gives: \[ 13 \sin \beta + 12 = 0 \implies \sin \beta = -\frac{12}{13} \] Since \(\tan \beta > 0\), \(\beta\) must be in the third quadrant. Thus: \[ \beta = 180^\circ + \sin^{-1}\left(\frac{12}{13}\right) \] Now, let's compute the values requested. ### (1) \(\sin(\alpha - \beta)\) Using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Knowing: - \(\cos \alpha = -\frac{4}{5}\) implies \(\sin \alpha = \sqrt{1 - \left(-\frac{4}{5}\right)^2} = \frac{3}{5}\) For \(\beta\): - \(\sin \beta = -\frac{12}{13}\) implies \(\cos \beta = -\sqrt{1 - \left(-\frac{12}{13}\right)^2} = -\frac{5}{13}\) Putting it all together: \[ \sin(\alpha - \beta) = \left(\frac{3}{5}\right)\left(-\frac{5}{13}\right) - \left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right) \] \[ = -\frac{15}{65} - \frac{48}{65} = -\frac{63}{65} \] ### (2) \(\cos(\alpha + \beta)\) Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting values: \[ \cos(\alpha + \beta) = \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) - \left(\frac{3}{5}\right)\left(-\frac{12}{13}\right) \] \[ = \frac{20}{65} + \frac{36}{65} = \frac{56}{65} \] ### (3) \(\cos 2\alpha\) Using the double angle formula: \[ \cos 2\alpha = 2\cos^2 \alpha - 1 \] \[ = 2\left(-\frac{4}{5}\right)^2 - 1 = 2\left(\frac{16}{25}\right) - 1 = \frac{32}{25} - 1 = \frac{7}{25} \] ### (4) \(\tan 2\alpha\) Using the formula: \[ \tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha} \] Calculating \(\tan \alpha\): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4} \] Thus: \[ \tan 2\alpha = \frac{2\left(-\frac{3}{4}\right)}{1 - \left(-\frac{3}{4}\right)^2} = \frac{-\frac{3}{2}}{1 - \frac{9}{16}} = \frac{-\frac{3}{2}}{\frac{7}{16}} = -\frac{3 \cdot 16}{2 \cdot 7} = -\frac{24}{7} \] Finally, summarizing the results: 1. \(\sin(\alpha - \beta)

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy