Pregunta
upstudy study bank question image url

(b) If \( 5 \cos \alpha+4=0 \) with \( \alpha \in\left[0^{\circ}: 180^{\circ}\right] \) and \( 13 \sin \beta+12=0 \) with \( \tan \beta>0 \), determine the value of the following without the use of a calculator and with the aid of a diagram: \( \begin{array}{lll}\text { (1) } \sin (\alpha-\beta) & \text { (2) } \cos (\alpha+\beta) \\ \text { (4) } \tan 2 \alpha & & \text { (3) } \cos 2 \alpha\end{array} \)

Ask by Jimenez Long. in South Africa
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \sin (\alpha-\beta) = -\frac{63}{65}, \quad \cos (\alpha+\beta) = \frac{56}{65}, \quad \cos 2\alpha = \frac{7}{25}, \quad \tan 2\alpha = -\frac{24}{7} \]

Solución

Given the equations \[ 5\cos \alpha + 4 = 0 \quad \text{and} \quad 13\sin \beta + 12 = 0, \] we first solve for \(\cos \alpha\) and \(\sin \beta\): \[ \cos \alpha = -\frac{4}{5}, \quad \sin \beta = -\frac{12}{13}. \] Since \(\alpha \in [0^\circ, 180^\circ]\) and \(\cos \alpha < 0\), it follows that \(\alpha\) is in the second quadrant, where \(\sin \alpha\) is positive. Using the Pythagorean identity: \[ \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(-\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}, \] \[ \sin \alpha = \frac{3}{5}. \] For \(\beta\), the condition \(\tan \beta > 0\) tells us that sine and cosine have the same sign. Since \(\sin \beta\) is negative, \(\beta\) must lie in the third quadrant. Then: \[ \cos^2 \beta = 1 - \sin^2 \beta = 1 - \left(-\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169}, \] \[ \cos \beta = -\frac{5}{13}. \] Now we proceed to compute each expression: --- 1. **Calculate \(\sin (\alpha-\beta)\):** Using the angle difference formula: \[ \sin (\alpha-\beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta, \] substitute the known values: \[ \sin (\alpha-\beta) = \frac{3}{5}\left(-\frac{5}{13}\right) - \left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right). \] Simplify the products: \[ \frac{3}{5}\left(-\frac{5}{13}\right) = -\frac{15}{65}, \] \[ \left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right) = \frac{48}{65}. \] Thus, \[ \sin (\alpha-\beta) = -\frac{15}{65} - \frac{48}{65} = -\frac{63}{65}. \] --- 2. **Calculate \(\cos (\alpha+\beta)\):** Using the angle sum formula: \[ \cos (\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta, \] substitute in the values: \[ \cos (\alpha+\beta) = \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) - \frac{3}{5}\left(-\frac{12}{13}\right). \] Simplify: \[ \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) = \frac{20}{65}, \] \[ \frac{3}{5}\left(-\frac{12}{13}\right) = -\frac{36}{65}. \] Thus, \[ \cos (\alpha+\beta) = \frac{20}{65} + \frac{36}{65} = \frac{56}{65}. \] --- 3. **Calculate \(\cos 2\alpha\):** Using the double-angle formula: \[ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha, \] substitute \(\cos^2 \alpha = \frac{16}{25}\) and \(\sin^2 \alpha = \frac{9}{25}\): \[ \cos 2\alpha = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}. \] --- 4. **Calculate \(\tan 2\alpha\):** First, find \(\tan \alpha\): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4}. \] Then use the tangent double-angle formula: \[ \tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}. \] Substitute \(\tan \alpha = -\frac{3}{4}\): \[ \tan 2\alpha = \frac{2\left(-\frac{3}{4}\right)}{1-\left(-\frac{3}{4}\right)^2} = \frac{-\frac{3}{2}}{1-\frac{9}{16}}. \] Simplify the denominator: \[ 1-\frac{9}{16} = \frac{16}{16}-\frac{9}{16} = \frac{7}{16}. \] Thus, \[ \tan 2\alpha = -\frac{3}{2} \cdot \frac{16}{7} = -\frac{48}{14} = -\frac{24}{7}. \] --- Final answers: \[ \sin (\alpha-\beta) = -\frac{63}{65}, \] \[ \cos (\alpha+\beta) = \frac{56}{65}, \] \[ \cos 2\alpha = \frac{7}{25}, \] \[ \tan 2\alpha = -\frac{24}{7}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the given equations and derive the requested values, let’s start by determining \(\alpha\) and \(\beta\) from their respective equations. 1. Rearranging the first equation: \[ 5 \cos \alpha + 4 = 0 \implies \cos \alpha = -\frac{4}{5} \] Since \(\cos \alpha\) is negative and \(\alpha\) is in the range \([0^\circ, 180^\circ]\), \(\alpha\) must be in the second quadrant. Thus: \[ \alpha = 180^\circ - \cos^{-1}\left(\frac{4}{5}\right) \] 2. For \(\beta\), rearranging gives: \[ 13 \sin \beta + 12 = 0 \implies \sin \beta = -\frac{12}{13} \] Since \(\tan \beta > 0\), \(\beta\) must be in the third quadrant. Thus: \[ \beta = 180^\circ + \sin^{-1}\left(\frac{12}{13}\right) \] Now, let's compute the values requested. ### (1) \(\sin(\alpha - \beta)\) Using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Knowing: - \(\cos \alpha = -\frac{4}{5}\) implies \(\sin \alpha = \sqrt{1 - \left(-\frac{4}{5}\right)^2} = \frac{3}{5}\) For \(\beta\): - \(\sin \beta = -\frac{12}{13}\) implies \(\cos \beta = -\sqrt{1 - \left(-\frac{12}{13}\right)^2} = -\frac{5}{13}\) Putting it all together: \[ \sin(\alpha - \beta) = \left(\frac{3}{5}\right)\left(-\frac{5}{13}\right) - \left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right) \] \[ = -\frac{15}{65} - \frac{48}{65} = -\frac{63}{65} \] ### (2) \(\cos(\alpha + \beta)\) Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting values: \[ \cos(\alpha + \beta) = \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) - \left(\frac{3}{5}\right)\left(-\frac{12}{13}\right) \] \[ = \frac{20}{65} + \frac{36}{65} = \frac{56}{65} \] ### (3) \(\cos 2\alpha\) Using the double angle formula: \[ \cos 2\alpha = 2\cos^2 \alpha - 1 \] \[ = 2\left(-\frac{4}{5}\right)^2 - 1 = 2\left(\frac{16}{25}\right) - 1 = \frac{32}{25} - 1 = \frac{7}{25} \] ### (4) \(\tan 2\alpha\) Using the formula: \[ \tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha} \] Calculating \(\tan \alpha\): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4} \] Thus: \[ \tan 2\alpha = \frac{2\left(-\frac{3}{4}\right)}{1 - \left(-\frac{3}{4}\right)^2} = \frac{-\frac{3}{2}}{1 - \frac{9}{16}} = \frac{-\frac{3}{2}}{\frac{7}{16}} = -\frac{3 \cdot 16}{2 \cdot 7} = -\frac{24}{7} \] Finally, summarizing the results: 1. \(\sin(\alpha - \beta)

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad