(b) If \( 5 \cos \alpha+4=0 \) with \( \alpha \in\left[0^{\circ}: 180^{\circ}\right] \) and \( 13 \sin \beta+12=0 \) with \( \tan \beta>0 \), determine the value of the following without the use of a calculator and with the aid of a diagram: \( \begin{array}{lll}\text { (1) } \sin (\alpha-\beta) & \text { (2) } \cos (\alpha+\beta) \\ \text { (4) } \tan 2 \alpha & & \text { (3) } \cos 2 \alpha\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the given equations and derive the requested values, let’s start by determining \(\alpha\) and \(\beta\) from their respective equations. 1. Rearranging the first equation: \[ 5 \cos \alpha + 4 = 0 \implies \cos \alpha = -\frac{4}{5} \] Since \(\cos \alpha\) is negative and \(\alpha\) is in the range \([0^\circ, 180^\circ]\), \(\alpha\) must be in the second quadrant. Thus: \[ \alpha = 180^\circ - \cos^{-1}\left(\frac{4}{5}\right) \] 2. For \(\beta\), rearranging gives: \[ 13 \sin \beta + 12 = 0 \implies \sin \beta = -\frac{12}{13} \] Since \(\tan \beta > 0\), \(\beta\) must be in the third quadrant. Thus: \[ \beta = 180^\circ + \sin^{-1}\left(\frac{12}{13}\right) \] Now, let's compute the values requested. ### (1) \(\sin(\alpha - \beta)\) Using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Knowing: - \(\cos \alpha = -\frac{4}{5}\) implies \(\sin \alpha = \sqrt{1 - \left(-\frac{4}{5}\right)^2} = \frac{3}{5}\) For \(\beta\): - \(\sin \beta = -\frac{12}{13}\) implies \(\cos \beta = -\sqrt{1 - \left(-\frac{12}{13}\right)^2} = -\frac{5}{13}\) Putting it all together: \[ \sin(\alpha - \beta) = \left(\frac{3}{5}\right)\left(-\frac{5}{13}\right) - \left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right) \] \[ = -\frac{15}{65} - \frac{48}{65} = -\frac{63}{65} \] ### (2) \(\cos(\alpha + \beta)\) Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting values: \[ \cos(\alpha + \beta) = \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) - \left(\frac{3}{5}\right)\left(-\frac{12}{13}\right) \] \[ = \frac{20}{65} + \frac{36}{65} = \frac{56}{65} \] ### (3) \(\cos 2\alpha\) Using the double angle formula: \[ \cos 2\alpha = 2\cos^2 \alpha - 1 \] \[ = 2\left(-\frac{4}{5}\right)^2 - 1 = 2\left(\frac{16}{25}\right) - 1 = \frac{32}{25} - 1 = \frac{7}{25} \] ### (4) \(\tan 2\alpha\) Using the formula: \[ \tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha} \] Calculating \(\tan \alpha\): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4} \] Thus: \[ \tan 2\alpha = \frac{2\left(-\frac{3}{4}\right)}{1 - \left(-\frac{3}{4}\right)^2} = \frac{-\frac{3}{2}}{1 - \frac{9}{16}} = \frac{-\frac{3}{2}}{\frac{7}{16}} = -\frac{3 \cdot 16}{2 \cdot 7} = -\frac{24}{7} \] Finally, summarizing the results: 1. \(\sin(\alpha - \beta)
