Question
upstudy study bank question image url

\( \left. \begin{array} { l } { f ( x ) = x ^ { n } } \\ { f ^ { \prime } ( x ) = n x ^ { n - 1 } } \\ { \int x d x = x ^ { 2 } \quad \int 2 x d x } \\ { = \frac { x ^ { n + 1 } } { n + 1 } } \end{array} \right. \)

Ask by Welch Bird. in Mexico
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Claro, aquí tienes una explicación simplificada: - **Función y derivada**: - Si \( f(x) = x^n \), entonces su derivada es \( f'(x) = n x^{n-1} \). - **Integrales**: - \( \int x \, dx = \frac{x^2}{2} + C \) - \( \int 2x \, dx = x^2 + C \) - En general, \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \) (si \( n \neq -1 \)) Estas son las principales conclusiones de las ecuaciones que proporcionaste.

Solution

Claro, vamos a analizar las funciones y las integrales que has proporcionado. 1. **Función y derivada**: - La función \( f(x) = x^n \) es una función polinómica. - Su derivada, que se denota como \( f'(x) \), se calcula utilizando la regla de la potencia: \[ f'(x) = n x^{n-1} \] 2. **Integral**: - La integral de \( x \) con respecto a \( x \) se expresa como: \[ \int x \, dx = \frac{x^2}{2} + C \] donde \( C \) es la constante de integración. - Para la integral de \( 2x \): \[ \int 2x \, dx = 2 \cdot \frac{x^2}{2} + C = x^2 + C \] 3. **Integral general**: - La integral de \( x^n \) se puede generalizar como: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \] En resumen, hemos analizado la función \( f(x) = x^n \), su derivada \( f'(x) = n x^{n-1} \), y las integrales de \( x \) y \( 2x \). Si necesitas más detalles o ejemplos específicos, no dudes en preguntar.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that the derivative and integral you've mentioned are the foundations of calculus, established by Sir Isaac Newton and Gottfried Wilhelm Leibniz in the 17th century? Calculus has revolutionized mathematics and the sciences, laying the groundwork for everything from physics and engineering to economics and biology. These rules allow us to comprehend how quantities change and help us model real-world phenomena! In practical applications, you can utilize these concepts to analyze motion. For example, if you have a function describing the position of an object over time, differentiating that function gives you the velocity, while integrating a velocity function can tell you the total distance traveled. This relationship between differentiation and integration is crucial in fields like physics, where understanding motion is key to solving problems like projectile trajectories!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy