Question
upstudy study bank question image url

Finding the final amount in a word problem on compound interest Suppose that \( \$ 2000 \) is loaned at a rate of \( 11 \% \), compounded semiannually. Assuming that no payments are made, find the amount owed after 6 years. Do not round any intermediate computations, and round your answer to the nearest cent.

Ask by Summers Stanley. in the United States
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The amount owed after 6 years is approximately \$3802.41.

Solution

To find the final amount owed after 6 years with compound interest, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. ### Given values: - \( P = 2000 \) - \( r = 0.11 \) (11% as a decimal) - \( n = 2 \) (since the interest is compounded semiannually) - \( t = 6 \) ### Step 1: Substitute the values into the formula We will substitute the known values into the compound interest formula: \[ A = 2000 \left(1 + \frac{0.11}{2}\right)^{2 \times 6} \] ### Step 2: Calculate the expression inside the parentheses First, calculate \( \frac{0.11}{2} \): \[ \frac{0.11}{2} = 0.055 \] Now, substitute this back into the formula: \[ A = 2000 \left(1 + 0.055\right)^{12} \] ### Step 3: Calculate \( 1 + 0.055 \) \[ 1 + 0.055 = 1.055 \] ### Step 4: Raise \( 1.055 \) to the power of \( 12 \) Now we need to calculate \( (1.055)^{12} \): \[ (1.055)^{12} \] ### Step 5: Multiply by the principal amount Finally, multiply the result by \( 2000 \): \[ A = 2000 \times (1.055)^{12} \] Now, let's perform the calculations to find the final amount \( A \). Calculate the value by following steps: - step0: Calculate: \(2000\times 1.055^{12}\) - step1: Convert the expressions: \(2000\left(\frac{211}{200}\right)^{12}\) - step2: Simplify: \(2000\times \frac{211^{12}}{200^{12}}\) - step3: Rewrite the expression: \(200\times 10\times \frac{211^{12}}{200^{12}}\) - step4: Reduce the numbers: \(10\times \frac{211^{12}}{200^{11}}\) - step5: Rewrite the expression: \(10\times \frac{211^{12}}{100^{11}\times 2^{11}}\) - step6: Rewrite the expression: \(10\times \frac{211^{12}}{10^{22}\times 2^{11}}\) - step7: Reduce the numbers: \(1\times \frac{211^{12}}{10^{21}\times 2^{11}}\) - step8: Multiply the fractions: \(\frac{211^{12}}{2048\times 10^{21}}\) The calculation gives us: \[ A \approx 3802.414972 \] ### Step 6: Round to the nearest cent Rounding \( 3802.414972 \) to the nearest cent, we get: \[ A \approx 3802.41 \] ### Final Answer The amount owed after 6 years is approximately **\$3802.41**.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find the final amount owed after 6 years on a loan of \( \$ 2000 \) at a rate of \( 11\% \) compounded semiannually, we can use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) = the amount of money accumulated after n years, including interest. - \( P \) = the principal amount (the initial amount of money). - \( r \) = the annual interest rate (decimal). - \( n \) = the number of times that interest is compounded per year. - \( t \) = the number of years the money is invested or borrowed. In this case, \( P = 2000 \), \( r = 0.11 \), \( n = 2 \) (since it’s compounded semiannually), and \( t = 6 \). Plugging in the values: \[ A = 2000 \left(1 + \frac{0.11}{2}\right)^{2 \cdot 6} \] \[ A = 2000 \left(1 + 0.055\right)^{12} \] \[ A = 2000 \left(1.055\right)^{12} \] Calculating \( (1.055)^{12} \): \[ A \approx 2000 \times 1.7137 \] \[ A \approx 3427.40 \] Thus, the amount owed after 6 years is approximately \( \$ 3427.40 \).

Related Questions

Latest Arithmetic Questions

2) Dadas las siguientes ternas de fracciones, ordenarlas de modo decreciente utilizando fracciones equivalentes: \( \begin{array}{l}\text { a) }-\frac{9}{4} ;-\frac{11}{5} ;-\frac{5}{2} \\ \text { 3) Dadas las siguientes ternas de fracciones, ordenarlas de modo creciente utilizando } \\ \text { fracciones equivalentes: } \\ \begin{array}{l}\text { a) }+\frac{4}{15} ;+\frac{1}{4} ;+\frac{5}{12} \\ \text { 4) Calcular el número mixto equivalente a cada una de las siguientes fracciones y luego } \\ \text { establecer cuál es el número entero más cercano de cada una: } \\ +\frac{104}{27} ;-\frac{26}{11} ;-\frac{44}{15} ;+\frac{65}{24} \\ \text { 5) Una tormenta de granizo causó daños en dos chacras de cultivo de duraznos. En La } \\ \text { Emilia afectó } 15 / 32 \text { de la producción y en La Larga } 14 / 25 \cdot \text { ¿A cuál le causó mayor } \\ \text { daño? } \\ \text { 6) Una empresa está construyendo dos edificios. En la torre Las Flores falta completar } \\ 7 / 30 \text { y en el Edificio Esplendor } 6 / 25 \cdot ~ ¿ C u a ́ l ~ e s t a ́ ~ m a ́ s ~ c e r c a ~ d e ~ s e r ~ t e r m i n a d o ? ~\end{array} \\ \text { 7) Un depósito de nafta contiene } 13 / 40 \text { de su capacidad y otro de gasoil contiene } 11 / 36 \\ \text { de la suya. Los dos depósitos tienen la misma capacidad. ¿Cuál tiene más } \\ \text { combustible? } \\ \text { 8) Dos hoteles están vendiendo la temporada de verano. Torreón del Plata ha vendido } \\ \text { 9/14 de sus plazas; Miramar vendió } 3 / 5 \text { de sus plazas. ¿Cuál está más cerca de la } \\ \text { ocupación plena? }\end{array} \)
Arithmetic Argentina Feb 21, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy