Pregunta
upstudy study bank question image url

Find from first principle, the derivatives of \( \sqrt{\text { tan }} \)

Ask by Park Nichols. in Nepal
Nov 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( \sqrt{\tan(x)} \) is \( \frac{1 + \tan^2(x)}{2\sqrt{\tan(x)}} \).

Solución

To find the derivative of \( f(x) = \sqrt{\tan(x)} \) from first principles, we will use the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] First, we need to compute \( f(x+h) \): \[ f(x+h) = \sqrt{\tan(x+h)} \] Now, we can substitute this into the derivative formula: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{\tan(x+h)} - \sqrt{\tan(x)}}{h} \] To simplify this expression, we can multiply the numerator and the denominator by the conjugate of the numerator: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\tan(x+h)} - \sqrt{\tan(x)}\right)\left(\sqrt{\tan(x+h)} + \sqrt{\tan(x)}\right)}{h\left(\sqrt{\tan(x+h)} + \sqrt{\tan(x)}\right)} \] This simplifies the numerator: \[ \sqrt{\tan(x+h)} - \sqrt{\tan(x)} = \frac{\tan(x+h) - \tan(x)}{\sqrt{\tan(x+h)} + \sqrt{\tan(x)}} \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h\left(\sqrt{\tan(x+h)} + \sqrt{\tan(x)}\right)} \] Using the derivative of \( \tan(x) \), which is \( \sec^2(x) \), we can express the limit: \[ \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h} = \sec^2(x) \] Now substituting this back into our expression for \( f'(x) \): \[ f'(x) = \frac{\sec^2(x)}{\sqrt{\tan(x+h)} + \sqrt{\tan(x)}} \] As \( h \to 0 \), \( \tan(x+h) \to \tan(x) \), so \( \sqrt{\tan(x+h)} \to \sqrt{\tan(x)} \). Therefore, we can simplify the denominator: \[ \sqrt{\tan(x+h)} + \sqrt{\tan(x)} \to 2\sqrt{\tan(x)} \] Thus, we have: \[ f'(x) = \frac{\sec^2(x)}{2\sqrt{\tan(x)}} \] Finally, we can express \( \sec^2(x) \) in terms of \( \tan(x) \): \[ \sec^2(x) = 1 + \tan^2(x) \] So the derivative of \( f(x) = \sqrt{\tan(x)} \) is: \[ f'(x) = \frac{1 + \tan^2(x)}{2\sqrt{\tan(x)}} \] In conclusion, the derivative of \( \sqrt{\tan(x)} \) is: \[ \boxed{\frac{1 + \tan^2(x)}{2\sqrt{\tan(x)}}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the derivative of \( f(x) = \sqrt{\tan(x)} \) from first principles, we start with the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] Substituting our function into this formula gives: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{\tan(x + h)} - \sqrt{\tan(x)}}{h} \] To simplify, we can use the conjugate to eliminate the square roots. Multiply the numerator and denominator by the conjugate: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\tan(x + h)} - \sqrt{\tan(x)}\right)\left(\sqrt{\tan(x + h)} + \sqrt{\tan(x)}\right)}{h \left(\sqrt{\tan(x + h)} + \sqrt{\tan(x)}\right)} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{\tan(x + h) - \tan(x)}{h \left(\sqrt{\tan(x + h)} + \sqrt{\tan(x)}\right)} \] The limit of the numerator as \( h \to 0 \) is \( \tan'(x) = \sec^2(x) \). Thus we have: \[ f'(x) = \frac{\sec^2(x)}{\sqrt{\tan(x + h)} + \sqrt{\tan(x)}} \] Taking the limit as \( h \to 0 \) gives us: \[ f'(x) = \frac{\sec^2(x)}{2\sqrt{\tan(x)}} \] So, the derivative of \( \sqrt{\tan(x)} \) is: \[ f'(x) = \frac{\sec^2(x)}{2\sqrt{\tan(x)}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad