Answer
The image of the line after translation and reflection is given by the parametric equations:
\[
(x'', y'') = \left( \frac{10 - 3t h_x + 4t h_y}{5}, \frac{19 + 3t h_y - 8t h_x}{5} \right)
\]
Solution
To find the image of the line given by \( (x, y) = (-1, 0) + t h \) under the specified transformations, we will follow these steps:
1. **Translate the line**: We will first apply the translation that takes \( (1, 0) \) to \( (0, 1) \).
2. **Reflect the translated line**: Next, we will reflect the translated line about the line \( y = 2x \).
### Step 1: Translation
The translation vector can be determined by finding the difference between the target point and the original point:
\[
\text{Translation vector} = (0, 1) - (1, 0) = (-1, 1)
\]
Now, we apply this translation to the line \( (x, y) = (-1, 0) + t h \):
\[
(x', y') = (-1, 0) + (-1, 1) + t h = (-2 + t h_x, 1 + t h_y)
\]
where \( h = (h_x, h_y) \).
### Step 2: Reflection about the line \( y = 2x \)
To reflect a point \( (x', y') \) about the line \( y = 2x \), we can use the following formula for reflection across a line \( Ax + By + C = 0 \):
\[
\text{Reflected point} = \left( \frac{x' (B^2 - A^2) - 2AB y' - 2AC}{A^2 + B^2}, \frac{y' (A^2 - B^2) - 2AB x' - 2BC}{A^2 + B^2} \right)
\]
For the line \( y = 2x \), we can rewrite it in the form \( -2x + y = 0 \), which gives us \( A = -2, B = 1, C = 0 \).
Now, we will apply this reflection formula to the translated point \( (x', y') \).
Let's calculate the reflected point using the above formula.
### Calculation
We will perform the calculations for the reflection of the translated line point \( (x', y') \) using the reflection formula.
Let’s denote:
- \( A = -2 \)
- \( B = 1 \)
- \( C = 0 \)
Now we will calculate the reflected point.
The reflected coordinates will be:
\[
\text{Reflected } x = \frac{x' (1^2 - (-2)^2) - 2(-2)(1)y' - 2(-2)(0)}{(-2)^2 + 1^2}
\]
\[
\text{Reflected } y = \frac{y' ((-2)^2 - 1^2) - 2(-2)(1)x' - 2(1)(0)}{(-2)^2 + 1^2}
\]
Now, let's compute these values.
### Final Calculation
We will compute the reflection for the general point \( (x', y') = (-2 + t h_x, 1 + t h_y) \).
Let's perform the calculations.
1. **Calculate the reflected x-coordinate**:
\[
\text{Reflected } x = \frac{(-2 + t h_x)(1 - 4) + 4(1)(1 + t h_y)}{4 + 1}
\]
\[
= \frac{(-2 + t h_x)(-3) + 4(1 + t h_y)}{5}
\]
\[
= \frac{6 - 3t h_x + 4 + 4t h_y}{5}
\]
\[
= \frac{10 - 3t h_x + 4t h_y}{5}
\]
2. **Calculate the reflected y-coordinate**:
\[
\text{Reflected } y = \frac{(1 + t h_y)(4 - 1) + 4(-2)(-2 + t h_x)}{5}
\]
\[
= \frac{(1 + t h_y)(3) + 16 - 8t h_x}{5}
\]
\[
= \frac{3 + 3t h_y + 16 - 8t h_x}{5}
\]
\[
= \frac{19 + 3t h_y - 8t h_x}{5}
\]
### Conclusion
The image of the line under the specified transformations is given by the parametric equations:
\[
(x'', y'') = \left( \frac{10 - 3t h_x + 4t h_y}{5}, \frac{19 + 3t h_y - 8t h_x}{5} \right)
\]
This represents the transformed line after translation and reflection.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution