Question
upstudy study bank question image url

\( \lim _ { x \rightarrow + \infty } x ^ { \alpha } ( \sqrt { x ^ { 2 } + 2 x + 3 } - x - 1 ) \)

Ask by Stuart Mullins. in Italy
Nov 23,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

Il limite è: \[ \lim _ { x \rightarrow + \infty } x ^ { \alpha } ( \sqrt { x ^ { 2 } + 2 x + 3 } - x - 1 ) = \begin{cases} 0 & \text{se } \alpha < 1 \\ \frac{3}{2} & \text{se } \alpha = 1 \\ +\infty & \text{se } \alpha > 1 \end{cases}. \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Mind Expander

To solve this limit, we start by simplifying the expression inside the limit. We can rewrite \(\sqrt{x^2 + 2x + 3}\) as follows: \[ \sqrt{x^2 + 2x + 3} = \sqrt{x^2(1 + \frac{2}{x} + \frac{3}{x^2})} = x\sqrt{1 + \frac{2}{x} + \frac{3}{x^2}} \] As \(x \rightarrow +\infty\), we can use the binomial expansion for \(\sqrt{1 + u}\) where \(u = \frac{2}{x} + \frac{3}{x^2}\): \[ \sqrt{1 + \frac{2}{x} + \frac{3}{x^2}} \approx 1 + \frac{1}{2}\left(\frac{2}{x} + \frac{3}{x^2}\right) \] This simplifies to: \[ 1 + \frac{1}{x} + \frac{3/2}{x^2} + O\left(\frac{1}{x^3}\right) \] Substituting this back, we have: \[ \sqrt{x^2 + 2x + 3} \approx x\left(1 + \frac{1}{x} + \frac{3/2}{x^2}\right) = x + 1 + \frac{3/2}{x} + O\left(\frac{1}{x^2}\right) \] Now substituting this approximation into our original expression we find: \[ \sqrt{x^2 + 2x + 3} - x - 1 \approx \left(x + 1 + \frac{3/2}{x} + O\left(\frac{1}{x^2}\right)\right) - x - 1 = \frac{3/2}{x} + O\left(\frac{1}{x^2}\right) \] Thus, we can rewrite the limit as: \[ \lim_{x \rightarrow +\infty} x^{\alpha} \left(\frac{3/2}{x} + O\left(\frac{1}{x^2}\right)\right) = \lim_{x \rightarrow +\infty} \left(\frac{3/2}{x^{1-\alpha}} + O\left(\frac{1}{x^{2-\alpha}}\right)\right) \] Now we analyze the limit based on the value of \(\alpha\): 1. If \(\alpha < 1\), \(\frac{3/2}{x^{1-\alpha}} \rightarrow +\infty\). 2. If \(\alpha = 1\), \(\frac{3/2}{x^{1-\alpha}} \rightarrow \frac{3}{2}\). 3. If \(\alpha > 1\), \(\frac{3/2}{x^{1-\alpha}} \rightarrow 0\). Therefore, we conclude: \[ \lim_{x \rightarrow +\infty} x^{\alpha} \left(\sqrt{x^2 + 2x + 3} - x - 1\right) = \begin{cases} +\infty & \text{if } \alpha < 1 \\ \frac{3}{2} & \text{if } \alpha = 1 \\ 0 & \text{if } \alpha > 1 \end{cases} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy