Instructions Input the value of \( \mathrm{x}, \mathrm{y} \), and z in the applet above. Based on the output, answer the questions given below. 1. \( \mathrm{x}= \) cost, \( \mathrm{y}=\operatorname{sint}, \mathrm{z}=\mathrm{t} / 5 \) 2. \( \mathrm{x}=\mathrm{t} \operatorname{cost}, \mathrm{y}=\mathrm{t} \operatorname{sint}, \mathrm{z}=\mathrm{t} \) 3. \( \mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}+3, \mathrm{z}=\mathrm{t}^{2}-1 \) 4. \( \mathrm{x}=2 \operatorname{sint}, y=0, z=2 \operatorname{cost} \) Question 1 Which of the following space curve represent helix? तलका मध्ये कुनचाही space curve ले helix (कलमको spring जस्तो curve) जनाँउदछ? Tick all that apply A \( \square \mathrm{x}= \) hcost, \( \mathrm{y}=\operatorname{sint}, \mathrm{z}=\mathrm{t} / 5 \) B \( \square \mathrm{x}=\mathrm{t} \operatorname{cost}, \mathrm{y}=\mathrm{t} \operatorname{sint}, \mathrm{z}=\mathrm{t} \) C \( \square \mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}+3, \mathrm{z}=\mathrm{t}^{2}-1 \) D \( \square x=2 \operatorname{sint}, y=0, z=2 \operatorname{cost} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To identify which space curves represent a helix, we need to understand that a helix is characterized by circular motion in one plane while simultaneously progressing along a third dimension. Looking at the options: - **Option A**: This is not a helix because it has a constant z-value that does not lead to a vertical progression over time. - **Option B**: This is indeed a helix! It describes circular motion in the xy-plane while progressing along the z-direction. - **Option C**: This represents a parabola, not a helix, since it lacks the circular aspect in the xy-plane. - **Option D**: This is essentially a circle in the xy-plane but doesn't have a continuous vertical movement like a helix since y is constant. So, the correct option that represents a helix is **B** \( \mathrm{x} = \mathrm{t} \operatorname{cost}, \mathrm{y} = \mathrm{t} \operatorname{sint}, \mathrm{z} = \mathrm{t} \).