Question
upstudy study bank question image url

14. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given lines. \[ y=\sqrt{x}, y=0, x=4 \] a. Rotated around the \( x \)-axis b. Rotated around the \( y \)-axis c. Rotated around the line \( x=4 \) d. Rotated around the line \( x=6 \)

Ask by Kirk Fitzgerald. in the United States
Dec 17,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The volumes for the different rotations are as follows: a. Rotated around the \( x \)-axis: \( 8\pi \) b. Rotated around the \( y \)-axis: \( 8\pi \) c. Rotated around the line \( x = 4 \): \( 8\pi \) d. Rotated around the line \( x = 6 \): \( 16\pi \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

The Deep Dive

To find the volume of the solid generated by revolving the region bounded by the curves about the specified lines, we can use the method of disks and shells. First, let's identify the area we are working with. The region is bounded by the curves \(y = \sqrt{x}\), \(y = 0\) (the x-axis), and the vertical line \(x = 4\). This forms a region that looks like a "slice" of a curve. ### a. Rotated around the \(x\)-axis When rotated around the \(x\)-axis, we can use the disk method. The volume \(V\) is given by: \[ V = \pi \int_{0}^{4} (\sqrt{x})^2 \, dx = \pi \int_{0}^{4} x \, dx = \pi \left[ \frac{x^2}{2} \right]_{0}^{4} = \pi \left( \frac{16}{2} - 0 \right) = 8\pi \] ### b. Rotated around the \(y\)-axis For rotation about the \(y\)-axis, we will use the shell method. The volume \(V\) is given by: \[ V = 2\pi \int_{0}^{4} x \cdot \sqrt{x} \, dx = 2\pi \int_{0}^{4} x^{3/2} \, dx = 2\pi \left[ \frac{x^{5/2}}{5/2} \right]_{0}^{4} = 2\pi \cdot \frac{2}{5} \cdot (4^{5/2}) = 2\pi \cdot \frac{2}{5} \cdot 32 = \frac{128\pi}{5} \] ### c. Rotated around the line \(x=4\) Using the shell method again, the volume generated is calculated by adjusting the radius. The volume \(V\) now is: \[ V = 2\pi \int_{0}^{4} (4-x) \cdot \sqrt{x} \, dx = 2\pi \int_{0}^{4} (4\sqrt{x} - x^{3/2}) \, dx \] Calculating each integral, we find: \[ = 2\pi \left[ \frac{8}{3} x^{3/2} - \frac{2}{5} x^{5/2} \right]_{0}^{4} = 2\pi \left( \frac{8}{3} \cdot 8 - \frac{2}{5} \cdot 32 \right) = 2\pi \left( \frac{64}{3} - \frac{64}{5} \right) \] This gives a final volume of \(V = \frac{256\pi}{15}\). ### d. Rotated around the line \(x=6\) In this case, where we rotate about \(x=6\), we again use the shell method: \[ V = 2\pi \int_{0}^{4} (6-x) \cdot \sqrt{x} \, dx = 2\pi \int_{0}^{4} (6\sqrt{x} - x^{3/2}) \, dx \] Calculating the integrals gives: \[ = 2\pi \left[ 6 \cdot \frac{8}{3} - \frac{2}{5} \cdot 32 \right] = 2\pi \left( 16 - \frac{64}{5} \right) = 2\pi \left( \frac{80}{5} - \frac{64}{5} \right) = \frac{32\pi}{5} \] In summary, the volumes are: - **a.** \(8\pi\) - **b.** \(\frac{128\pi}{5}\) - **c.** \(\frac{256\pi}{15}\) - **d.** \(\frac{32\pi}{5}\)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy