Question
upstudy study bank question image url

Calculate the following without the use of a calculato (1) \( \sin 75^{\circ} \) (3) \( \sin 50^{\circ} \cos 10^{\circ}+\cos 50^{\circ} \sin 10^{\circ} \)

Ask by Hampton Reid. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( \sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4} \) \( \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} = \frac{\sqrt{3}}{2} \)

Solution

To solve the problems, we will use trigonometric identities and known values. ### (1) Calculate \( \sin 75^{\circ} \) We can express \( 75^{\circ} \) as the sum of \( 45^{\circ} \) and \( 30^{\circ} \): \[ \sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ}) \] Using the sine addition formula: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] we can substitute \( a = 45^{\circ} \) and \( b = 30^{\circ} \): \[ \sin 75^{\circ} = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ} \] Now, we use known values: - \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \cos 30^{\circ} = \frac{\sqrt{3}}{2} \) - \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \sin 30^{\circ} = \frac{1}{2} \) Substituting these values in: \[ \sin 75^{\circ} = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \] \[ = \frac{\sqrt{6} + \sqrt{2}}{4} \] ### (3) Calculate \( \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} \) This expression can be simplified using the sine addition formula: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] where \( a = 50^{\circ} \) and \( b = 10^{\circ} \): \[ \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} = \sin(50^{\circ} + 10^{\circ}) = \sin 60^{\circ} \] Now, we know: \[ \sin 60^{\circ} = \frac{\sqrt{3}}{2} \] ### Final Answers 1. \( \sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4} \) 2. \( \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} = \frac{\sqrt{3}}{2} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To calculate \( \sin 75^{\circ} \), we can use the sine addition formula. \( 75^{\circ} \) can be expressed as \( 45^{\circ} + 30^{\circ} \). Using the sine addition formula: \[ \sin(75^{\circ}) = \sin(45^{\circ} + 30^{\circ}) = \sin(45^{\circ}) \cos(30^{\circ}) + \cos(45^{\circ}) \sin(30^{\circ}) \] Substituting known values: \[ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] For the second expression \( \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} \), we can also use the sine addition formula. This simplifies to: \[ \sin(50^{\circ} + 10^{\circ}) = \sin(60^{\circ}) \] Knowing that \( \sin(60^{\circ}) = \frac{\sqrt{3}}{2} \), we find: \[ \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} = \frac{\sqrt{3}}{2} \] Thus, the final answers are: 1) \( \sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4} \) 2) \( \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} = \frac{\sqrt{3}}{2} \)

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy