Calculate the following without the use of a calculato (1) \( \sin 75^{\circ} \) (3) \( \sin 50^{\circ} \cos 10^{\circ}+\cos 50^{\circ} \sin 10^{\circ} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To calculate \( \sin 75^{\circ} \), we can use the sine addition formula. \( 75^{\circ} \) can be expressed as \( 45^{\circ} + 30^{\circ} \). Using the sine addition formula: \[ \sin(75^{\circ}) = \sin(45^{\circ} + 30^{\circ}) = \sin(45^{\circ}) \cos(30^{\circ}) + \cos(45^{\circ}) \sin(30^{\circ}) \] Substituting known values: \[ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] For the second expression \( \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} \), we can also use the sine addition formula. This simplifies to: \[ \sin(50^{\circ} + 10^{\circ}) = \sin(60^{\circ}) \] Knowing that \( \sin(60^{\circ}) = \frac{\sqrt{3}}{2} \), we find: \[ \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} = \frac{\sqrt{3}}{2} \] Thus, the final answers are: 1) \( \sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4} \) 2) \( \sin 50^{\circ} \cos 10^{\circ} + \cos 50^{\circ} \sin 10^{\circ} = \frac{\sqrt{3}}{2} \)