Let \( Z=x^{2} \sin \left(3 x+y^{3}\right) \) (a) Evaluate \( \frac{\partial z}{\partial x} \) at \( \left({ }^{2} / 3,0\right) \) (b) Evaluate \( Z_{y} \) at \( (1,1) \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To find \( Z = x^{2} \sin(3x + y^{3}) \), we will compute the partial derivatives and then evaluate them at the specified points. (a) To find \( \frac{\partial Z}{\partial x} \), we use the product and chain rules. \[ \frac{\partial Z}{\partial x} = \frac{\partial}{\partial x}(x^{2}) \sin(3x + y^{3}) + x^{2} \frac{\partial}{\partial x}(\sin(3x + y^{3})) \] Calculating the first term: \[ \frac{\partial}{\partial x}(x^{2}) = 2x \quad \Rightarrow \quad 2x \sin(3x + y^{3}) \] Calculating the second term using the chain rule: \[ \frac{\partial}{\partial x}(\sin(3x + y^{3})) = \cos(3x + y^{3}) \cdot \frac{\partial}{\partial x}(3x + y^{3}) = 3\cos(3x + y^{3}) \] So, the second term becomes: \[ x^{2} \cdot 3\cos(3x + y^{3}) = 3x^{2} \cos(3x + y^{3}) \] Combining both parts, we have: \[ \frac{\partial Z}{\partial x} = 2x \sin(3x + y^{3}) + 3x^{2} \cos(3x + y^{3}) \] Now, evaluating at the point \(\left(\frac{2}{3}, 0\right)\): \[ \frac{\partial Z}{\partial x}\bigg|_{\left(\frac{2}{3}, 0\right)} = 2\left(\frac{2}{3}\right) \sin\left(3\left(\frac{2}{3}\right) + 0^{3}\right) + 3\left(\frac{2}{3}\right)^{2} \cos\left(3\left(\frac{2}{3}\right) + 0^{3}\right) \] \[ = \frac{4}{3} \sin(2) + 3 \cdot \frac{4}{9} \cos(2) = \frac{4}{3} \sin(2) + \frac{4}{3} \cos(2) = \frac{4}{3}(\sin(2) + \cos(2)) \] Thus, the final answer for part (a) is: \[ \frac{\partial Z}{\partial x}\bigg|_{\left(\frac{2}{3}, 0\right)} = \frac{4}{3}(\sin(2) + \cos(2)) \] (b) To find \( \frac{\partial Z}{\partial y} \) (denoted \( Z_{y} \)), we apply the chain rule: \[ \frac{\partial Z}{\partial y} = x^{2} \cos(3x + y^{3}) \cdot \frac{\partial}{\partial y}(3x + y^{3}) = x^{2} \cos(3x + y^{3}) \cdot 3y^{2} \] Thus, \[ Z_{y} = 3yx^{2} \cos(3x + y^{3}) \] Now, evaluating at the point \( (1, 1) \): \[ Z_{y}(1, 1) = 3(1)(1)^{2} \cos(3(1) + 1^{3}) = 3 \cos(4) \] Therefore, the final answer for part (b) is: \[ Z_{y}(1, 1) = 3 \cos(4) \]