Pregunta
upstudy study bank question image url

QUESTION 1 Given: \( S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \) 1.1 .1 Write \( S_{n} \) in expanded form 1.1 .2 Which term in 1.1 .1 is affected by the number of terms in the series? Consider \( r^{*}( \) write answer in scientific notation form where necessary) \( 1.2 \quad \) CASE \( 1: r>1 \) \( 1.2 .1 \quad \) If \( r=1,001 \) determine the values of (a) \( \quad r^{220} \) and \( S_{200} \) (b) \( r^{20000} \) and \( S_{20000} \) 1.2 .2 Determine \( r^{200} \) and \( S_{200} \) if: (a) \( r=\frac{5}{2} \) (b) \( r=3 \)

Ask by Bradley Marsh. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For \( r = 1.001 \): - \( r^{220} \approx 1.001^{220} \) - \( S_{200} \approx \frac{1.001(1.001^{200} - 1)}{0.001} \) - \( r^{20000} \approx 1.001^{20000} \) - \( S_{20000} \approx \frac{1.001(1.001^{20000} - 1)}{0.001} \) For \( r = \frac{5}{2} \): - \( r^{200} \approx 3.872592 \times 10^{79} \) - \( S_{200} \approx 6.45432 \times 10^{79} \) For \( r = 3 \): - \( r^{200} \approx 2.65614 \times 10^{95} \) - \( S_{200} \approx 3.98421 \times 10^{95} \)

Solución

Simplify the expression by following steps: - step0: : \(r^{20000}\) Expand the expression \( \left(\frac{5}{2}\right)^{200} \) Simplify the expression by following steps: - step0: Evaluate the power: \(\left(\frac{5}{2}\right)^{200}\) - step1: Evaluate the power: \(\frac{5^{200}}{2^{200}}\) Expand the expression \( \frac{3\left(3^{200}-1\right)}{3-1} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{3\left(3^{200}-1\right)}{3-1}\) - step1: Multiply the numbers: \(\frac{3^{201}-3}{3-1}\) - step2: Subtract the numbers: \(\frac{3^{201}-3}{2}\) Expand the expression \( r^{220} \) Simplify the expression by following steps: - step0: : \(r^{220}\) Expand the expression \( \frac{a\left(r^{n}-1\right)}{r-1} \) Simplify the expression by following steps: - step0: Multiply the terms: \(\frac{a\left(r^{n}-1\right)}{r-1}\) - step1: Multiply the terms: \(\frac{ar^{n}-a}{r-1}\) Expand the expression \( \frac{\frac{5}{2}\left(\left(\frac{5}{2}\right)^{200}-1\right)}{\frac{5}{2}-1} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{\frac{5}{2}\left(\left(\frac{5}{2}\right)^{200}-1\right)}{\frac{5}{2}-1}\) - step1: Subtract the numbers: \(\frac{\frac{5}{2}\times \frac{5^{200}-2^{200}}{2^{200}}}{\frac{5}{2}-1}\) - step2: Multiply the numbers: \(\frac{\frac{5^{201}-5\times 2^{200}}{2^{201}}}{\frac{5}{2}-1}\) - step3: Subtract the numbers: \(\frac{\frac{5^{201}-5\times 2^{200}}{2^{201}}}{\frac{3}{2}}\) - step4: Multiply by the reciprocal: \(\frac{5^{201}-5\times 2^{200}}{2^{201}}\times \frac{2}{3}\) - step5: Reduce the numbers: \(\frac{5^{201}-5\times 2^{200}}{2^{200}}\times \frac{1}{3}\) - step6: Multiply the fractions: \(\frac{5^{201}-5\times 2^{200}}{2^{200}\times 3}\) - step7: Multiply: \(\frac{5^{201}-5\times 2^{200}}{3\times 2^{200}}\) Expand the expression \( 3^{200} \) Simplify the expression by following steps: - step0: : \(3^{200}\) Expand the expression \( \frac{1.001\left(1.001^{20000}-1\right)}{1.001-1} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{1.001\left(1.001^{20000}-1\right)}{1.001-1}\) - step1: Convert the expressions: \(\frac{1.001\left(\left(\frac{1001}{1000}\right)^{20000}-1\right)}{1.001-1}\) - step2: Subtract the numbers: \(\frac{1.001\times \frac{1001^{20000}-1000^{20000}}{1000^{20000}}}{1.001-1}\) - step3: Multiply the numbers: \(\frac{\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20001}}}{1.001-1}\) - step4: Subtract the numbers: \(\frac{\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20001}}}{0.001}\) - step5: Convert the expressions: \(\frac{\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20001}}}{\frac{1}{1000}}\) - step6: Multiply by the reciprocal: \(\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20001}}\times 1000\) - step7: Reduce the numbers: \(\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20000}}\times 1\) - step8: Multiply: \(\frac{1001^{20001}-1001\times 1000^{20000}}{1000^{20000}}\) Expand the expression \( \frac{1.001\left(1.001^{200}-1\right)}{1.001-1} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{1.001\left(1.001^{200}-1\right)}{1.001-1}\) - step1: Convert the expressions: \(\frac{1.001\left(\left(\frac{1001}{1000}\right)^{200}-1\right)}{1.001-1}\) - step2: Subtract the numbers: \(\frac{1.001\times \frac{1001^{200}-1000^{200}}{1000^{200}}}{1.001-1}\) - step3: Multiply the numbers: \(\frac{\frac{1001^{201}-1001\times 1000^{200}}{1000^{201}}}{1.001-1}\) - step4: Subtract the numbers: \(\frac{\frac{1001^{201}-1001\times 1000^{200}}{1000^{201}}}{0.001}\) - step5: Convert the expressions: \(\frac{\frac{1001^{201}-1001\times 1000^{200}}{1000^{201}}}{\frac{1}{1000}}\) - step6: Multiply by the reciprocal: \(\frac{1001^{201}-1001\times 1000^{200}}{1000^{201}}\times 1000\) - step7: Reduce the numbers: \(\frac{1001^{201}-1001\times 1000^{200}}{1000^{200}}\times 1\) - step8: Multiply: \(\frac{1001^{201}-1001\times 1000^{200}}{1000^{200}}\) Let's solve the problem step by step. ### 1.1.1 Write \( S_{n} \) in expanded form The formula given is: \[ S_{n} = \frac{a(r^{n} - 1)}{r - 1} \] In expanded form, this can be expressed as: \[ S_{n} = \frac{ar^{n} - a}{r - 1} \] ### 1.1.2 Which term in 1.1.1 is affected by the number of terms in the series? The term that is affected by the number of terms in the series is \( r^{n} \). As \( n \) increases, \( r^{n} \) will grow larger, thus affecting the sum \( S_{n} \). ### 1.2 CASE 1: \( r > 1 \) #### 1.2.1 If \( r = 1.001 \), determine the values of: (a) \( r^{220} \) and \( S_{200} \) - **Calculating \( r^{220} \)**: \[ r^{220} = 1.001^{220} \] - **Calculating \( S_{200} \)**: \[ S_{200} = \frac{1.001(1.001^{200} - 1)}{1.001 - 1} \] (b) \( r^{20000} \) and \( S_{20000} \) - **Calculating \( r^{20000} \)**: \[ r^{20000} = 1.001^{20000} \] - **Calculating \( S_{20000} \)**: \[ S_{20000} = \frac{1.001(1.001^{20000} - 1)}{1.001 - 1} \] #### 1.2.2 Determine \( r^{200} \) and \( S_{200} \) if: (a) \( r = \frac{5}{2} \) - **Calculating \( r^{200} \)**: \[ r^{200} = \left(\frac{5}{2}\right)^{200} \] - **Calculating \( S_{200} \)**: \[ S_{200} = \frac{\frac{5}{2}\left(\left(\frac{5}{2}\right)^{200} - 1\right)}{\frac{5}{2} - 1} \] (b) \( r = 3 \) - **Calculating \( r^{200} \)**: \[ r^{200} = 3^{200} \] - **Calculating \( S_{200} \)**: \[ S_{200} = \frac{3(3^{200} - 1)}{3 - 1} \] Now, let's summarize the results for the calculations: 1. **For \( r = 1.001 \)**: - \( r^{220} \approx 1.001^{220} \) - \( S_{200} \approx \frac{1.001(1.001^{200} - 1)}{0.001} \) - \( r^{20000} \approx 1.001^{20000} \) - \( S_{20000} \approx \frac{1.001(1.001^{20000} - 1)}{0.001} \) 2. **For \( r = \frac{5}{2} \)**: - \( r^{200} \approx 3.872592 \times 10^{79} \) - \( S_{200} \approx 6.45432 \times 10^{79} \) 3. **For \( r = 3 \)**: - \( r^{200} \approx 2.65614 \times 10^{95} \) - \( S_{200} \approx 3.98421 \times 10^{95} \) These calculations provide the necessary values for the given conditions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The expanded form of \( S_n \) is \( S_n = a + ar + ar^2 + ar^3 + \ldots + ar^{n-1} \). In this expansion, the term that is directly influenced by the number of terms in the series is the last term, \( ar^{n-1} \), since it changes depending on the value of \( n \). To make calculations easier, you’ll often encounter approximations for exponential growth. For \( r = 1.001 \), calculating \( r^{220} \) gives a value around \( 1.001^{220} \approx 1.244 \) (or \( 1.244 \times 10^{0} \)). For \( S_{200} \): \( S_{200} \approx \frac{a(1.001^{200} - 1)}{0.001} \), which also grows with \( n \). For large \( n \), the sums can become substantial!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad