\( ( \frac { \sqrt { x } } { x - 4 } - \frac { 1 } { \sqrt { x } + 2 } ) \cdot \frac { x + 2 \sqrt { x } } { \sqrt { x } } ( x > 0 ; x \neq 4 ) \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Mind Expander
Let's simplify the given expression step by step. The original expression is: \[ \left( \frac { \sqrt { x } } { x - 4 } - \frac { 1 } { \sqrt { x } + 2 } \right) \cdot \frac { x + 2 \sqrt { x } } { \sqrt { x } } \] First, let's simplify the term inside the parentheses: \[ \frac { \sqrt { x } } { x - 4 } - \frac { 1 } { \sqrt { x } + 2 } \] To combine these fractions, we need a common denominator. The common denominator will be \( (x - 4)(\sqrt{x} + 2) \): \[ = \frac{\sqrt{x}(\sqrt{x} + 2) - (x - 4)}{(x - 4)(\sqrt{x} + 2)} \] Now, expand the numerator: \[ \sqrt{x}(\sqrt{x} + 2) = x + 2\sqrt{x} \] So our numerator becomes: \[ x + 2\sqrt{x} - (x - 4) = x + 2\sqrt{x} - x + 4 = 2\sqrt{x} + 4 \] Thus, we can rewrite the fraction: \[ \frac{2\sqrt{x} + 4}{(x - 4)(\sqrt{x} + 2)} \] Now, we substitute this back into the main expression: \[ \left(\frac{2\sqrt{x} + 4}{(x - 4)(\sqrt{x} + 2)}\right) \cdot \frac{x + 2\sqrt{x}}{\sqrt{x}} \] Next, simplify this by multiplying the fractions: \[ = \frac{(2\sqrt{x} + 4)(x + 2\sqrt{x})}{(x - 4)(\sqrt{x} + 2)\sqrt{x}} \] Let's now multiply out the numerator: The numerator \( (2\sqrt{x} + 4)(x + 2\sqrt{x}) \) becomes: \[ 2\sqrt{x} \cdot x + 4x + 2\cdot2 \cdot x + 4 \cdot 2\sqrt{x} = 2x\sqrt{x} + 4x + 4\sqrt{x} + 8 \] This gives us: \[ = 2x\sqrt{x} + 4x + 8 + 4\sqrt{x} \] Now, putting back everything we have: \[ = \frac{2x\sqrt{x} + 4x + 4\sqrt{x} + 8}{(x - 4)(\sqrt{x} + 2)\sqrt{x}} \] And that's the simplification of the entire expression! You could factor or further rearrange the numerator, but this gives you a clear expression. Final output: \[ \frac{2x\sqrt{x} + 4x + 4\sqrt{x} + 8}{(x - 4)(\sqrt{x} + 2)\sqrt{x}} \]