Question
upstudy study bank question image url

Dado el campo vectorial \( \vec{F}=(2 y-z) i+(3 x+1) j+(x y) \boldsymbol{k} \) ¿cuál es el rotacional \( \nabla \times F \) ?

Ask by Harrington Clarke. in Mexico
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El rotacional de \( \vec{F} \) es \( \nabla \times \vec{F} = x\, \mathbf{i} + (-1 - y)\, \mathbf{j} + 1\, \mathbf{k} \).

Solution

Para calcular el rotacional de un campo vectorial, utilizamos la fórmula \[ \nabla \times \vec{F} = \left( \frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z} \right)\mathbf{i} + \left( \frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x} \right)\mathbf{j} + \left( \frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y} \right)\mathbf{k}. \] Dado que \[ \vec{F} = (2y - z)\mathbf{i} + (3x + 1)\mathbf{j} + (xy)\mathbf{k}, \] identificamos las componentes: \[ F_1 = 2y - z, \quad F_2 = 3x + 1, \quad F_3 = xy. \] A continuación, calculamos las derivadas parciales necesarias: 1. Para la componente en \(\mathbf{i}\): \[ \frac{\partial F_3}{\partial y} = \frac{\partial (xy)}{\partial y} = x, \] \[ \frac{\partial F_2}{\partial z} = \frac{\partial (3x+1)}{\partial z} = 0. \] Por lo tanto, \[ \left( \frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z} \right) = x - 0 = x. \] 2. Para la componente en \(\mathbf{j}\): \[ \frac{\partial F_1}{\partial z} = \frac{\partial (2y-z)}{\partial z} = -1, \] \[ \frac{\partial F_3}{\partial x} = \frac{\partial (xy)}{\partial x} = y. \] Por lo tanto, \[ \left( \frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x} \right) = -1 - y. \] 3. Para la componente en \(\mathbf{k}\): \[ \frac{\partial F_2}{\partial x} = \frac{\partial (3x+1)}{\partial x} = 3, \] \[ \frac{\partial F_1}{\partial y} = \frac{\partial (2y-z)}{\partial y} = 2. \] Por lo tanto, \[ \left( \frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y} \right) = 3 - 2 = 1. \] Reuniendo todas las componentes, obtenemos: \[ \nabla \times \vec{F} = x\, \mathbf{i} + (-1-y)\, \mathbf{j} + 1\, \mathbf{k}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Para encontrar el rotacional del campo vectorial \( \vec{F} = (2y - z) \hat{i} + (3x + 1) \hat{j} + (xy) \hat{k} \), usamos la fórmula del rotacional en coordenadas cartesianas: \[ \nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2y - z & 3x + 1 & xy \end{vmatrix} \] Al calcular el determinante, encontramos: \[ \nabla \times \vec{F} = \left( \frac{\partial}{\partial y}(xy) - \frac{\partial}{\partial z}(3x + 1) \right) \hat{i} - \left( \frac{\partial}{\partial x}(xy) - \frac{\partial}{\partial z}(2y - z) \right) \hat{j} + \left( \frac{\partial}{\partial x}(3x + 1) - \frac{\partial}{\partial y}(2y - z) \right) \hat{k} \] Calculando cada componente se obtiene: 1. Componente \( \hat{i} \): \( \frac{\partial}{\partial y}(xy) - \frac{\partial}{\partial z}(3x + 1) = x - 0 = x \) 2. Componente \( \hat{j} \): \( \frac{\partial}{\partial x}(xy) - \frac{\partial}{\partial z}(2y - z) = y - (-1) = y + 1 \) 3. Componente \( \hat{k} \): \( \frac{\partial}{\partial x}(3x + 1) - \frac{\partial}{\partial y}(2y - z) = 3 - 2 = 1 \) Por lo tanto, el rotacional \( \nabla \times \vec{F} \) es: \[ \nabla \times \vec{F} = x \hat{i} - (y + 1) \hat{j} + 1 \hat{k} \] Finalmente, el resultado es: \[ \nabla \times \vec{F} = x \hat{i} - (y + 1) \hat{j} + \hat{k} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy